A Heavy Tailed Expectation Maximization Hidden Markov Random Field Model with Applications to Segmentation of MRI

被引:3
作者
Castillo-Barnes, Diego [1 ]
Peis, Ignacio [2 ]
Martinez-Murcia, Francisco J. [1 ]
Segovia, Fermin [1 ]
Illan, Ignacio A. [1 ,3 ]
Gorriz, Juan M. [1 ,4 ]
Ramirez, Javier [1 ]
Salas-Gonzalez, Diego [1 ]
机构
[1] Univ Granada, Signal Proc & Biomed Applicat, Granada, Spain
[2] Carlos III Univ, Signal Proc Grp, Madrid, Spain
[3] Florida State Univ, Dept Sci Comp, Tallahassee, FL 32306 USA
[4] Univ Cambridge, Dept Psychiat, Cambridge, England
来源
FRONTIERS IN NEUROINFORMATICS | 2017年 / 11卷
关键词
magnetic resonance image; brain tissue segmentation; gray matter; white matter; alpha-stable distribution; hidden Markov random fields; ALPHA-STABLE DISTRIBUTION; IMAGE SEGMENTATION; MIXTURE MODEL; TISSUE CLASSIFICATION; BRAIN IMAGES;
D O I
10.3389/fninf.2017.00066
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A wide range of segmentation approaches assumes that intensity histograms extracted from magnetic resonance images (MRI) have a distribution for each brain tissue that can be modeled by a Gaussian distribution or a mixture of them. Nevertheless, intensity histograms of White Matter and Gray Matter are not symmetric and they exhibit heavy tails. In this work, we present a hidden Markov random field model with expectation maximization (EM-HMRF) modeling the components using the alpha-stable distribution. The proposed model is a generalization of the widely used EM-HMRF algorithm with Gaussian distributions. We test the alpha-stable EM-HMRF model in synthetic data and brain MRI data. The proposed methodology presents two main advantages: Firstly, it is more robust to outliers. Secondly, we obtain similar results than using Gaussian when the Gaussian assumption holds. This approach is able to model the spatial dependence between neighboring voxels in tomographic brain MRI.
引用
收藏
页数:10
相关论文
共 27 条
  • [1] Ashburner J, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P81, DOI 10.1016/B978-012372560-8/50006-1
  • [2] Unified segmentation
    Ashburner, J
    Friston, KJ
    [J]. NEUROIMAGE, 2005, 26 (03) : 839 - 851
  • [3] Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation
    Beare, Richard J.
    Chen, Jian
    Kelly, Claire E.
    Alexopoulos, Dimitrios
    Smyser, Christopher D.
    Rogers, Cynthia E.
    Loh, Wai Y.
    Matthews, Lillian G.
    Cheong, Jeanie L. Y.
    Spittle, Alicia J.
    Anderson, Peter J.
    Doyle, Lex W.
    Inder, Terrie E.
    Seal, Marc L.
    Thompson, Deanne K.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2016, 10
  • [4] Bayesian mixture models of variable dimension for image segmentation
    Ferreira da Silva, Adelino R.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2009, 94 (01) : 1 - 14
  • [5] Constrained Gaussian mixture model framework for automatic segmentation of MR brain images
    Greenspan, Hayit
    Ruf, Amit
    Goldberger, Jacob
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (09) : 1233 - 1245
  • [6] Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms
    Laidlaw, DH
    Fleischer, KW
    Barr, AH
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1998, 17 (01) : 74 - 86
  • [7] Liang KB, 2016, Adv Inform Managemen, P2042, DOI 10.1109/IMCEC.2016.7867573
  • [8] Gaussian mixture model-based segmentation of MR images taken from premature infant brains
    Merisaari, Harri
    Parkkola, Riitta
    Alhoniemi, Esa
    Teras, Mika
    Lehtonen, Liisa
    Haataja, Leena
    Lapinleimu, Helena
    Nevalainen, Olli S.
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2009, 182 (01) : 110 - 122
  • [9] Automated Ischemic Lesion Segmentation in MRI Mouse Brain Data after Transient Middle Cerebral Artery Occlusion
    Mulder, Inge A.
    Khmelinskii, Artem
    Dzyubachyk, Oleh
    de Jong, Sebastiaan
    Rieff, Nathalie
    Wermer, MariekeJ. H.
    Hoehn, Mathias
    Lelieveldt, Boudewijn P. F.
    van den Maagdenberg, Arn M. J. M.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [10] 3D-brain segmentation using deep neural network and Gaussian mixture model
    Nguyen, Duy M. H.
    Vu, Huy T.
    Ung, Huy Q.
    Nguyen, Binh T.
    [J]. 2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 815 - 824