Berger-Shaw's theorem for p-hyponormal operators

被引:14
作者
Uchiyama, A [1 ]
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
关键词
D O I
10.1007/BF01233965
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a n-multicyclic p-hyponormal operator T, we shall show that \T\(2P) - \T*\(2P) belongs to the Schatten 1/p-class C-1/p and that tr((\T\(2p) - \T*\(2p))(1/p)) less than or equal to n/pi Area(sigma(T)).
引用
收藏
页码:221 / 230
页数:10
相关论文
共 10 条
[1]   ON P-HYPONORMAL OPERATORS FOR 0 LESS-THAN P LESS-THAN 1 [J].
ALUTHGE, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (03) :307-315
[2]   SELFCOMMUTATORS OF MULTICYCLIC HYPONORMAL OPERATORS ARE ALWAYS TRACE CLASS [J].
BERGER, CA ;
SHAW, BI .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (06) :1193-1199
[3]   PUTNAMS INEQUALITY FOR P-HYPONORMAL OPERATORS [J].
CHO, M ;
ITOH, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (08) :2435-2440
[4]  
DUGGAL BP, 1997, ACTA SCI MATH SZEGED, V63, P623
[5]  
FURUTA T, 1987, P AM MATH SOC, V101, P85
[6]   OPERATOR-INEQUALITY [J].
HANSEN, F .
MATHEMATISCHE ANNALEN, 1980, 246 (03) :249-250
[7]   A note on p-hyponormal operators [J].
Huruya, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (12) :3617-3624
[8]   AN INEQUALITY FOR AREA OF HYPONORMAL SPECTRA [J].
PUTNAM, CR .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (04) :323-&
[9]  
XIA D., 1983, Spectral Theory of Hyponormal Operators
[10]  
XIA DX, 1980, SCI SINICA, V23, P700