Cone-based joint sparse modelling for hyperspectral image classification

被引:11
作者
Wang, Ziyu [1 ,2 ]
Zhu, Rui [3 ]
Fukui, Kazuhiro [4 ]
Xue, Jing-Hao [2 ]
机构
[1] UCL, Dept Secur & Crime Sci, London, England
[2] UCL, Dept Stat Sci, London, England
[3] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
[4] Univ Tsukuba, Dept Comp Sci, Tsukuba, Ibaraki, Japan
基金
英国工程与自然科学研究理事会;
关键词
Hyperspectral image classification; Joint sparse model; Simultaneous orthogonal matching pursuit; Cone; non-negativity; NONNEGATIVE MATRIX FACTORIZATION; ORTHOGONAL MATCHING PURSUIT; LEAST-SQUARES; TARGET DETECTION; REPRESENTATION; DICTIONARY; NMF; REGULARIZATION; APPROXIMATION; RECOGNITION;
D O I
10.1016/j.sigpro.2017.11.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Joint sparse model (JSM) is being extensively investigated on hyperspectral images (HSIs) and has achieved promising performance for classification. In JSM, it is assumed that neighbouring hyperspectral pixels can share sparse representations. However, the coefficients of the endmembers used to reconstruct a test HSI pixel is desirable to be non-negative for the sake of physical interpretation. Hence in this paper, we introduce the non-negativity constraint into JSM. The non-negativity constraint implies a cone-shaped space instead of the infinite sample space for pixel representation. This leads us to propose a new model called cone-based joint sparse model (C-JSM), to install the non-negativity on top of the sparse and joint modelling. To solve the C-JSIVI problem, we also propose a new algorithm through introducing the non-negativity constraint into the simultaneous orthogonal matching pursuit (SOMP) algorithm. The new algorithm is called non-negative simultaneous orthogonal matching pursuit (NN-SOMP). Experiments and investigations show that the proposed C-JSM can produce a more stable, sparse representation and a superior classification than other methods which only ensure the sparsity, non-negativity or spatial coherence. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 429
页数:13
相关论文
共 50 条
  • [31] Hyperspectral image classification based on sparse modeling of spectral blocks
    Azar, Saeideh Ghanbari
    Meshgini, Saeed
    Rezaii, Tohid Yousefi
    Beheshti, Soosan
    NEUROCOMPUTING, 2020, 407 : 12 - 23
  • [32] Locality Constraint Joint-Sparse and Weighted Low-Rank Based Hyperspectral Image Classification
    Dundar, Tugcan
    Ince, Taner
    2023 10TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN AIR AND SPACE TECHNOLOGIES, RAST, 2023,
  • [33] Local spatial similarity based joint-sparse regression for hyperspectral image unmixing
    Guo, Ming-Shuang
    Huang, Jie
    OPTIK, 2023, 283
  • [34] Label Noise Cleansing with Sparse Graph for Hyperspectral Image Classification
    Leng, Qingming
    Yang, Haiou
    Jiang, Junjun
    REMOTE SENSING, 2019, 11 (09)
  • [35] Hyperspectral Image Classification via Joint Sparse representation of Multi-layer Superpixles
    Sima, Haifeng
    Mi, Aizhong
    Han, Xue
    Du, Shouheng
    Wang, Zhiheng
    Wang, Jianfang
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (10): : 5015 - 5038
  • [36] A WEIGHTED MULTI-TASK JOINT SPARSE REPRESENTATION METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    An, Jinliang
    Mo, Yu
    Guo, Zhi
    Zhang, Xiangrong
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2446 - 2449
  • [37] Hyperspectral Image Classification via Multitask Joint Sparse Representation and Stepwise MRF Optimization
    Yuan, Yuan
    Lin, Jianzhe
    Wang, Qi
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 2966 - 2977
  • [38] Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification
    Zhang, Shuzhen
    Li, Shutao
    Fu, Wei
    Fang, Leiyuan
    REMOTE SENSING, 2017, 9 (02)
  • [39] Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10): : 3973 - 3985
  • [40] Hyperspectral image classification by sparse tensor based support tensor machine
    Gong, Xueliang
    Li, Yu
    Zhao, Quanhua
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141