Impact of [18F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology

被引:85
作者
Cheebsumon, Patsuree [1 ]
Yaqub, Maqsood [1 ]
van Velden, Floris H. P. [1 ]
Hoekstra, Otto S. [1 ]
Lammertsma, Adriaan A. [1 ]
Boellaard, Ronald [1 ]
机构
[1] Vrije Univ Amsterdam Med Ctr, Dept Nucl Med & PET Res, NL-1007 MB Amsterdam, Netherlands
关键词
Tumour delineation; Volume of interest (VOI); F-18]FDG; Positron emission tomography (PET); Tumour volume; POSITRON-EMISSION-TOMOGRAPHY; CELL LUNG-CANCER; FDG-PET; PHANTOM MEASUREMENTS; F-18-FDG PET; RADIOTHERAPY; VOLUME; PERFORMANCE; DEFINITION; VALIDATION;
D O I
10.1007/s00259-011-1899-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Delineation of tumour boundaries is important for quantification of [F-18]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) studies and for definition of biological target volumes in radiotherapy. Several (semi-) automatic tumour delineation methods have been proposed, but these methods differ substantially in estimating tumour volume and their performance may be affected by imaging parameters. The main purpose of this study was to explore the performance dependence of various (semi-) automatic tumour delineation methods on different imaging parameters, i.e. reconstruction parameters, noise levels and tumour characteristics, and thereby the need for standardization or inter-institute calibration. Methods Six different types of delineation methods were evaluated by assessing accuracy and precision in estimating tumour volume from simulations and phantom experiments. The evaluated conditions were various tumour sizes, iterative reconstruction algorithm settings and image filtering, tumour to background ratios (TBR), noise levels and region growing initializations. Results The accuracy of all automatic delineation methods was influenced when imaging parameters were varied. The performance of all tumour delineation methods depends on variation of TBR, image resolution and image noise level, and to a lesser extent on number of iterations during image reconstruction or the initialization method of the region generation. For sphere sizes larger than 20 mm diameter a contrast-oriented method provided the most accurate results, on average, over all simulated conditions. For threshold-based methods the accuracy of tumour delineation improved after image denoising/filtering. Conclusion The accuracy and precision of all studied tumour delineation methods was affected by physiological and imaging parameters. The latter illustrates the need for optimizing imaging parameters and/or for careful calibration and optimization of delineation methods.
引用
收藏
页码:2136 / 2144
页数:9
相关论文
共 22 条
  • [1] Boellaard R, 2004, J NUCL MED, V45, P1519
  • [2] FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0
    Boellaard, Ronald
    O'Doherty, Mike J.
    Weber, Wolfgang A.
    Mottaghy, Felix M.
    Lonsdale, Markus N.
    Stroobants, Sigrid G.
    Oyen, Wim J. G.
    Kotzerke, Joerg
    Hoekstra, Otto S.
    Pruim, Jan
    Marsden, Paul K.
    Tatsch, Klaus
    Hoekstra, Corneline J.
    Visser, Eric P.
    Arends, Bertjan
    Verzijlbergen, Fred J.
    Zijlstra, Josee M.
    Comans, Emile F. I.
    Lammertsma, Adriaan A.
    Paans, Anne M.
    Willemsen, Antoon T.
    Beyer, Thomas
    Bockisch, Andreas
    Schaefer-Prokop, Cornelia
    Delbeke, Dominique
    Baum, Richard P.
    Chiti, Arturo
    Krause, Bernd J.
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 (01) : 181 - 200
  • [3] Standards for PET Image Acquisition and Quantitative Data Analysis
    Boellaard, Ronald
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2009, 50 : 11S - 20S
  • [4] Brix G, 1997, J NUCL MED, V38, P1614
  • [5] Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios:: influence of reconstruction algorithms
    Daisne, JF
    Sibomana, M
    Bol, A
    Doumont, T
    Lonneux, M
    Grégoire, V
    [J]. RADIOTHERAPY AND ONCOLOGY, 2003, 69 (03) : 247 - 250
  • [6] Predictive and prognostic value of FDG-PET in nonsmall-cell lung cancer - A systematic review
    de Geus-Oei, Lioe-Fee
    van der Heijden, Henricus F. M.
    Corstens, Frans H. M.
    Oyen, Wirn J. G.
    [J]. CANCER, 2007, 110 (08) : 1654 - 1664
  • [7] Erdi YE, 2007, CURR MED IMAGING, V3, P3
  • [8] Recommendations on the use of 18F-FDG PET in oncology
    Fletcher, James W.
    Djulbegovic, Benjamin
    Soares, Heloisa P.
    Siegel, Barry A.
    Lowe, Val J.
    Lyman, Gary H.
    Coleman, R. Edward
    Wahl, Richard
    Paschold, John Christopher
    Avrill, Norbert
    Einhorn, Lawrence H.
    Suh, W. Warren
    Samson'O, David
    Delbekell, Dominique
    Gorman, Mark
    Shields, Anthony F.
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2008, 49 (03) : 480 - 508
  • [9] A gradient-based method for segmenting FDG-PET images:: methodology and validation
    Geets, Xavier
    Lee, John A.
    Bol, Anne
    Lonneux, Max
    Gregoire, Vincent
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2007, 34 (09) : 1427 - 1438
  • [10] Hatt M, 2011, J NUCL MED, V52, P658, DOI 10.2967/jnumed.110.084897