Complete chloroplast genome sequence of Punica granatum 'Nana' (Lythraceae) and phylogenetic analysis

被引:2
作者
Wang, Jie [1 ,2 ,3 ]
Wu, Zhi-Qiang [4 ]
Ma, Li [1 ,2 ,3 ]
Gu, Cui-Hua [1 ,2 ,3 ]
机构
[1] Zhejiang A&F Univ, Sch Landscape & Architecture, 666 Wusu St, Hangzhou 311300, Zhejiang, Peoples R China
[2] Zhejiang A&F Univ, Zhejiang Prov Key Lab Germplasm Innovat & Utiliza, Hangzhou, Peoples R China
[3] Zhejiang A&F Univ, Key Lab Natl Forestry & Grassland Adm Germplasm I, Hangzhou, Peoples R China
[4] Chinese Acad Agr Sci, Guangdong Lab Lingnan Modern Agr, Agr Genom Inst Shenzhen, Shenzhen Branch,Genome Anal Lab,Minist Agr, Shenzhen, Peoples R China
来源
MITOCHONDRIAL DNA PART B-RESOURCES | 2020年 / 5卷 / 03期
关键词
Punica granatum 'Nana'; chloroplast genome; Lythraceae; phylogenetic analysis;
D O I
10.1080/23802359.2020.1764401
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Pomegranate (Punica granatum L.) is of great significance both as a fruit tree and an ornamental plant. Hereon, we sequenced and characterized the complete chloroplast genome of Punica granatum 'Nana' and performed phylogenetic analysis concerning related species. It turned out that the length of chloroplast genome sequence reached 158,639 bp and exhibited a four-conjoined structure, i.e., a large single copy region (LSC, 89,022 bp), a small single copy region (SSC, 18,685 bp) and twain inverted repeat regions (IRa and IRb, 25,466 bp). 112 unique genes were identified, consisting of 78 protein-coding genes, four ribosomal RNA (rRNA) genes and 30 transfer RNA (tRNA) genes. The result of phylogenetic analysis based on Neighbor-joining (NJ) method was consistent with that of Bayesian inference (BI), which strongly supported that Punica granatum 'Nana' was close to its original species Punica granatum and they together had a close relationship with Heimia myrtifolia within Lythraceae.
引用
收藏
页码:2070 / 2071
页数:2
相关论文
共 16 条
[1]  
Al Khayri JM, 2019, ADV PLANT BREEDING S, V3, P601
[2]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[3]   jModelTest 2: more models, new heuristics and parallel computing [J].
Darriba, Diego ;
Taboada, Guillermo L. ;
Doallo, Ramon ;
Posada, David .
NATURE METHODS, 2012, 9 (08) :772-772
[4]   NOVOPlasty: de novo assembly of organelle genomes from whole genome data [J].
Dierckxsens, Nicolas ;
Mardulyn, Patrick ;
Smits, Guillaume .
NUCLEIC ACIDS RESEARCH, 2017, 45 (04)
[5]  
Doyle J.L.D., 1987, Phytochem. Bull.
[6]   MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design [J].
Faircloth, Brant C. .
MOLECULAR ECOLOGY RESOURCES, 2008, 8 (01) :92-94
[7]   OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes [J].
Greiner, Stephan ;
Lehwark, Pascal ;
Bock, Ralph .
NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) :W59-W64
[8]   Comparative analyses of chloroplast genomes from 22 Lythraceae species: inferences for phylogenetic relationships and genome evolution within Myrtales [J].
Gu, Cuihua ;
Ma, Li ;
Wu, Zhiqiang ;
Chen, Kai ;
Wang, Yixiang .
BMC PLANT BIOLOGY, 2019, 19 (1)
[9]   NCBIBLAST: a better web interface [J].
Johnson, Mark ;
Zaretskaya, Irena ;
Raytselis, Yan ;
Merezhuk, Yuri ;
McGinnis, Scott ;
Madden, Thomas L. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :W5-W9
[10]   MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization [J].
Katoh, Kazutaka ;
Rozewicki, John ;
Yamada, Kazunori D. .
BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) :1160-1166