New robust statistical procedures for the polytomous logistic regression models

被引:15
作者
Castilla, Elena [1 ]
Ghosh, Abhik [2 ]
Martin, Nirian [1 ]
Pardo, Leandro [1 ]
机构
[1] Univ Complutense Madrid, Dept Stat, Madrid 28040, Spain
[2] Indian Stat Inst, Kolkata, India
关键词
Influence function; Minimum density power divergence estimators; Polytomous logistic regression; Robustness; Wald-type test statistics; DENSITY POWER DIVERGENCE;
D O I
10.1111/biom.12890
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications.
引用
收藏
页码:1282 / 1291
页数:10
相关论文
共 36 条
[1]   Robust asymptotic tests for the equality of multivariate coefficients of variation [J].
Aerts, Stephanie ;
Haesbroeck, Gentiane .
TEST, 2017, 26 (01) :163-187
[2]  
Albert A., 1987, MULTIVARIATE INTERPR
[3]  
[Anonymous], 2006, STAT METHODS APPL, DOI DOI 10.1007/s10260-006-0008-6
[4]   Generalized Wald-type tests based on minimum density power divergence estimators [J].
Basu, A. ;
Mandal, A. ;
Martin, N. ;
Pardo, L. .
STATISTICS, 2016, 50 (01) :1-26
[5]  
Basu A, 2017, ARXIV170702333STATME
[6]  
Basu A., 2011, MONOGRAPHS STAT APPL
[7]   A Wald-type test statistic for testing linear hypothesis in logistic regression models based on minimum density power divergence estimator [J].
Basu, Ayanendranath ;
Ghosh, Abhik ;
Mandal, Abhijit ;
Martin, Nirian ;
Pardo, Leandro .
ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02) :2741-2772
[8]   CALCULATION OF POLYCHOTOMOUS LOGISTIC-REGRESSION PARAMETERS USING INDIVIDUALIZED REGRESSIONS [J].
BEGG, CB ;
GRAY, R .
BIOMETRIKA, 1984, 71 (01) :11-18
[9]   A nomogram was developed to enhance the use of multinomial logistic regression modeling in diagnostic research [J].
Bertens, Loes C. M. ;
Moons, Karel G. M. ;
Rutten, Frans H. ;
van Mourik, Yvonne ;
Hoes, Arno W. ;
Reitsma, Johannes B. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2016, 71 :51-57
[10]   Polytomous logistic regression analysis could be applied more often in diagnostic research [J].
Biesheuvel, C. J. ;
Vergouwe, Y. ;
Steyerberg, E. W. ;
Grobbee, D. E. ;
Moons, K. G. M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2008, 61 (02) :125-134