Useable Machine Learning for Sentinel-2 multispectral satellite imagery

被引:0
|
作者
Langevin, Scott [1 ]
Bethune, Chris [1 ]
Horne, Philippe [1 ]
Kramer, Steve [2 ]
Gleason, Jeffrey [2 ]
Johnson, Ben [3 ]
Barnett, Ezekiel [3 ]
Husain, Fahd [1 ]
Bradley, Adam [1 ]
机构
[1] Uncharted Software, 2 Berkeley St 600, Toronto, ON, Canada
[2] Kung Fu AI, 211 E 7th St Suite 100, Austin, TX USA
[3] Jataware, 6630 31st P1 NW, Washington, DC USA
关键词
Remote Sensing; Machine Learning; Satellite Imagery; Image Classification;
D O I
10.1117/12.2599951
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the challenges when building Machine Learning (ML) models using satellite imagery is building sufficiently labeled data sets for training. In the past, this problem has been addressed by adapting computer vision approaches to GIS data with significant recent contributions to the field. But when trying to adapt these models to Sentinel-2 multi-spectral satellite imagery these approaches fall short. Previously, researchers used transfer learning methods trained on ImageNet and constrained the 13 channels to 3 RGB ones using existing training sets, but this severely limits the available data that can be used for complex image classification, object detection, and image segmentation tasks. To address this deficit, we present Distil, and demonstrate a specific method using our system for training models with all available Sentinel-2 channels. There currently is no publicly available rich labeled training data resource such as ImageNet for Sentinel-2 satellite imagery that covers the entire globe. Our approach using the Distil system was: a) pre-training models using unlabeled data sets and b) adapting to specific downstream tasks using a small number of annotations solicited from a user. We discuss the Distil system, an application of the system in the remote sensing domain, and a case study identifying likely locust breeding grounds in Africa from unlabeled 13-channel satellite imagery.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Extracting tea plantations in complex landscapes using Sentinel-2 imagery and machine learning algorithms
    Chen, Panpan
    Zhao, Chunjiang
    Duan, Dandan
    Wang, Fan
    COMMUNITY ECOLOGY, 2022, 23 (02) : 163 - 172
  • [42] LAND COVER MAPPING IN CAMAU PROVINCE BY MACHINE LEARNING ALGORITHMS USING SENTINEL-2 IMAGERY
    Van Anh, Tran
    Hang, Le Minh
    Hanh, Tran Hong
    Nghi, Le Thanh
    Anh, Tran Trung
    Chi, Nguyen Cam
    Khiên, Ha Trung
    43rd Asian Conference on Remote Sensing, ACRS 2022, 2022,
  • [43] Estimating Soil Organic Matter Content Using Sentinel-2 Imagery by Machine Learning in Shanghai
    Wang, Xinxin
    Han, Jigang
    Wang, Xia
    Yao, Huaiying
    Zhang, Lang
    IEEE ACCESS, 2021, 9 : 78215 - 78225
  • [44] Machine learning-based detection and mapping of riverine litter utilizing Sentinel-2 imagery
    Mohsen, Ahmed
    Kiss, Timea
    Kovacs, Ferenc
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (25) : 67742 - 67757
  • [45] A novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery
    Xun, Lan
    Zhang, Jiahua
    Cao, Dan
    Yang, Shanshan
    Yao, Fengmei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 181 : 148 - 166
  • [46] Out-of-year corn yield prediction at field-scale using Sentinel-2 satellite imagery and machine learning methods
    Desloires, Johann
    Ienco, Dino
    Botrel, Antoine
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 209
  • [47] Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery
    Zhou, Lin
    Shao, Zhenfeng
    Wang, Shugen
    Huang, Xiao
    GEO-SPATIAL INFORMATION SCIENCE, 2022, 25 (03) : 383 - 398
  • [48] Classification of protected grassland habitats using deep learning architectures on Sentinel-2 satellite imagery data
    Diaz-Ireland, Gabriel
    Gulcin, Derya
    Lopez-Sanchez, Aida
    Pla, Eduardo
    Burton, John
    Velazquez, Javier
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 134
  • [49] Feature Selection on Sentinel-2 Multispectral Imagery for Mapping a Landscape Infested by Parthenium Weed
    Kiala, Zolo
    Mutanga, Onisimo
    Odindi, John
    Peerbhay, Kabir
    REMOTE SENSING, 2019, 11 (16)
  • [50] Small Arctic rivers mapped from Sentinel-2 satellite imagery and ArcticDEM
    Lu, Xin
    Yang, Kang
    Lu, Yao
    Gleason, Colin J.
    Smith, Laurence C.
    Li, Manchun
    JOURNAL OF HYDROLOGY, 2020, 584 (584)