Pricing approximations and error estimates for local Levy-type models with default

被引:1
|
作者
Lorig, Matthew [1 ]
Pagliarani, Stefano [2 ,3 ]
Pascucci, Andrea [4 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Ecole Polytech, Ctr Math Appliquees, F-91128 Palaiseau, France
[3] CNRS, F-91128 Palaiseau, France
[4] Univ Bologna, Dipartimento Matemat, Bologna, Italy
基金
美国国家科学基金会;
关键词
Partial integro-differential equation; Asymptotic expansion; Pseudo-differential calculus; Option pricing; Levy-type process; Defaultable asset; JUMP; VOLATILITY; OPTIONS; CLAIMS;
D O I
10.1016/j.camwa.2015.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find approximate solutions of partial integro-differential equations, which arise in financial models when defaultable assets are described by general scalar Levy-type stochastic processes. We derive rigorous error bounds for the approximate solutions. We also provide numerical examples illustrating the usefulness and versatility of our methods in a variety of financial settings. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1189 / 1219
页数:31
相关论文
共 6 条
  • [1] Multiscale exponential Levy-type models
    Lorig, Matthew
    Lozano-Carbasse, Oriol
    QUANTITATIVE FINANCE, 2015, 15 (01) : 91 - 100
  • [2] Pricing Bermudan options under local Levy models with default
    Borovykh, A.
    Pascucci, A.
    Oosterlee, C. W.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 929 - 953
  • [3] The Smile of Certain Levy-Type Models
    Jacquier, Antoine
    Lorig, Matthew
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2013, 4 (01): : 804 - 830
  • [4] MONTE CARLO METHOD FOR PRICING LOOKBACK TYPE OPTIONS IN LEVY MODELS
    Kudryavtsev, O. E.
    Grechko, A. S.
    Mamedov, I. E.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2024, 69 (02) : 243 - 264
  • [5] Computable error estimates of a finite difference scheme for option pricing in exponential Lévy models
    Jonas Kiessling
    Raúl Tempone
    BIT Numerical Mathematics, 2014, 54 : 1023 - 1065
  • [6] Computable error estimates of a finite difference scheme for option pricing in exponential L,vy models
    Kiessling, Jonas
    Tempone, Raul
    BIT NUMERICAL MATHEMATICS, 2014, 54 (04) : 1023 - 1065