Pricing approximations and error estimates for local Levy-type models with default

被引:1
作者
Lorig, Matthew [1 ]
Pagliarani, Stefano [2 ,3 ]
Pascucci, Andrea [4 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Ecole Polytech, Ctr Math Appliquees, F-91128 Palaiseau, France
[3] CNRS, F-91128 Palaiseau, France
[4] Univ Bologna, Dipartimento Matemat, Bologna, Italy
基金
美国国家科学基金会;
关键词
Partial integro-differential equation; Asymptotic expansion; Pseudo-differential calculus; Option pricing; Levy-type process; Defaultable asset; JUMP; VOLATILITY; OPTIONS; CLAIMS;
D O I
10.1016/j.camwa.2015.03.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find approximate solutions of partial integro-differential equations, which arise in financial models when defaultable assets are described by general scalar Levy-type stochastic processes. We derive rigorous error bounds for the approximate solutions. We also provide numerical examples illustrating the usefulness and versatility of our methods in a variety of financial settings. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1189 / 1219
页数:31
相关论文
共 41 条
[1]   Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data [J].
Ait-Sahalia, Yacine ;
Jacod, Jean .
JOURNAL OF ECONOMIC LITERATURE, 2012, 50 (04) :1007-1050
[2]   Numerical valuation of options with jumps in the underlying [J].
Almendral, A ;
Oosterlee, CW .
APPLIED NUMERICAL MATHEMATICS, 2005, 53 (01) :1-18
[3]  
Andersen L., 2000, Review of derivatives research, V4, P231
[4]  
[Anonymous], J PORTFOLIO MANAGEME
[5]  
[Anonymous], 2002, HDB BROWNIAN MOTION, DOI DOI 10.1007/978-3-0348-8163-0
[6]  
[Anonymous], 1998, Pseudo differential operators generating Markov processes
[7]  
[Anonymous], 1992, PITMAN RES NOTES MAT
[8]  
Barndorff-Nielsen O.E, 1997, Finance Stoch, V2, P41, DOI DOI 10.1007/S007800050032
[9]   Smart expansion and fast calibration for jump diffusions [J].
Benhamou, E. ;
Gobet, E. ;
Miri, M. .
FINANCE AND STOCHASTICS, 2009, 13 (04) :563-589
[10]  
Bielecki T., 2001, CREDIT RISK MODELLIN