Trading kinetic energy: how late kinetic decoupling of dark matter changes Neff

被引:4
作者
Diacoumis, James A. D. [1 ]
Wong, Yvonne Y. Y. [1 ]
机构
[1] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2019年 / 01期
基金
澳大利亚研究理事会;
关键词
CMBR theory; cosmological neutrinos; dark matter theory; particle physics - cosmology connection;
D O I
10.1088/1475-7516/2019/01/001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Elastic scattering between dark matter particles and a relativistic species such as photons or neutrinos leads to a transfer of energy from the latter due to their intrinsically different temperature scaling relations. In this work, we point out that this siphoning of energy from the radiation bath manifests as a change in the effective number of neutrinos N-eff, and compute the expected shift Delta N-eff for dark matter-photon and dark matter-neutrino elastic scattering as a function of the dark matter mass m(psi) and scattering cross section sigma(psi-X). For (m(psi), sigma(psi-X))-parameter regions already explored by nonlinear probes such as the Lyman-alpha forest through collisional and/or free-streaming damping, we find shifts of vertical bar Delta N-eff vertical bar similar or equal to O (10(-2)), which may be within the reach of the proposed CMB-S4 experiment. For most of the as-yet-unexplored parameter space, however, we expect vertical bar Delta N-eff vertical bar less than or similar to O (10(-3)). An ideal 21 cm tomography survey of the dark ages limited only by cosmic variance is potentially sensitive to vertical bar Delta N-eff vertical bar similar or equal to O (10(-2)), in which case dark matter masses up to m(psi) similar to 10 MeV may be probed via their effect on N-eff.
引用
收藏
页数:18
相关论文
共 45 条
  • [1] Abazajian K.N., LIGHT STERILE NEUTRI
  • [2] Dark matter and dark radiation
    Ackerman, Lotty
    Buckley, Matthew R.
    Carroll, Sean M.
    Kamionkowski, Marc
    [J]. PHYSICAL REVIEW D, 2009, 79 (02):
  • [3] Planck 2015 results XVII. Constraints on primordial non-Gaussianity
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Arrojam, F.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Battaner, E.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chiang, H. C.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Couchot, F.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [4] Aghanim N, 2018, ARXIV180706209
  • [5] Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions
    Ali-Haimoud, Yacine
    Chluba, Jens
    Kamionkowski, Marc
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (07)
  • [6] [Anonymous], arXiv
  • [7] [Anonymous], CMB-S4 Science Book
  • [8] Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term
    Binder, Tobias
    Covi, Laura
    Kamada, Ayuki
    Murayama, Hitoshi
    Takahashi, Tomo
    Yoshida, Naoki
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (11):
  • [9] The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes
    Blas, Diego
    Lesgourgues, Julien
    Tram, Thomas
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (07):
  • [10] Constraining dark matter candidates from structure formation
    Boehm, C
    Fayet, P
    Schaeffer, R
    [J]. PHYSICS LETTERS B, 2001, 518 (1-2) : 8 - 14