Hybrid cost and time path planning for multiple autonomous guided vehicles

被引:71
作者
Fazlollahtabar, Hamed [1 ]
Hassanli, Samaneh [2 ]
机构
[1] Damghan Univ, Dept Ind Engn, Coll Engn, Damghan, Iran
[2] Mazandaran Univ Sci & Technol, Dept Ind Engn, Babol Sar, Iran
关键词
Scheduling; Routing; Autonomous guided vehicles (AGVs); Path planning; Network simplex algorithm (NSA); ALGORITHM; ROBOTS;
D O I
10.1007/s10489-017-0997-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, simultaneous scheduling and routing problem for autonomous guided vehicles (AGVs) is investigated. At the beginning of the planning horizon list of orders is processed in the manufacturing system. The produced or semi-produced products are carried among stations using AGVs according to the process plan and the earliest delivery time rule. Thus, a network of stations and AGV paths is configured. The guide path is bi-direction and AGVs can only stop at the end of a node. Two kinds of collisions exist namely: AGVs move directly to a same node and AGVs are on a same path. Delay is defined as an order is carried after the earliest delivery time. Therefore, the problem is defined to consider some AGVs and material handling orders available and assign orders to AGVs so that collision free paths as cost attribute and minimal waiting time as time attribute, are obtained. Solving this problem leads to determine: the number of required AGVs for orders fulfillment assign orders to AGVs schedule delivery and material handling and route different AGVs. The problem is formulated as a network mathematical model and optimized using a modified network simplex algorithm. The proposed mathematical formulation is first adapted to a minimum cost flow (MCF) model and then optimized using a modified network simplex algorithm (NSA). Numerical illustrations verify and validate the proposed modelling and optimization. Also, comparative studies guarantee superiority of the proposed MCF-NSA solution approach.
引用
收藏
页码:482 / 498
页数:17
相关论文
共 50 条
  • [41] Path Planning and Predictive Control of Autonomous Vehicles for Obstacle Avoidance
    Zhang, Duo
    Chen, Bo
    2022 18TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2022), 2022,
  • [42] Autonomous Vehicles Path Planning With Enhanced Ant Colony Optimization
    Wang, Yijing
    Lu, Xin
    Zuo, Zhiqiang
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 6633 - 6638
  • [43] A Path Planning Method for Autonomous Vehicles Based on Risk Assessment
    Yang, Wei
    Li, Cong
    Zhou, Yipeng
    WORLD ELECTRIC VEHICLE JOURNAL, 2022, 13 (12):
  • [44] A survey on path planning for persistent autonomy of autonomous underwater vehicles
    Zeng, Zheng
    Lian, Lian
    Sammut, Karl
    He, Fangpo
    Tang, Youhong
    Lammas, Andrew
    OCEAN ENGINEERING, 2015, 110 : 303 - 313
  • [45] Estimation of Distribution Algorithm for Autonomous Underwater Vehicles Path Planning
    Liu, Run-Dong
    Zhan, Zhi-Hui
    Chen, Wei-Neng
    Yu, Zhiwen
    Zhang, Jun
    ADVANCES IN NEURAL NETWORKS - ISNN 2018, 2018, 10878 : 647 - 655
  • [46] A Survey on Path Planning for Autonomous Ground Vehicles in Unstructured Environments
    Wang, Nan
    Li, Xiang
    Zhang, Kanghua
    Wang, Jixin
    Xie, Dongxuan
    MACHINES, 2024, 12 (01)
  • [47] Case-based path planning for autonomous underwater vehicles
    Vasudevan, C
    Ganesan, K
    AUTONOMOUS ROBOTS, 1996, 3 (2-3) : 79 - 89
  • [48] Underwater Navigation, Localization and Path Planning for Autonomous Vehicles: A Review
    Jalal, Fahad
    Nasir, Faizan
    PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 817 - 828
  • [49] Path Planning Based on Bezier Curve for Autonomous Ground Vehicles
    Choi, Ji-wung
    Curry, Renwick
    Elkaim, Gabriel
    WCECS 2008: ADVANCES IN ELECTRICAL AND ELECTRONICS ENGINEERING - IAENG SPECIAL EDITION OF THE WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, PROCEEDINGS, 2009, : 158 - 166
  • [50] Dynamic Weighted A* Path Planning for Autonomous Vehicles in Evolving Environments
    Priya, V.
    Balambica, V.
    Achudhan, M.
    International Journal of Vehicle Structures and Systems, 2024, 16 (03) : 435 - 441