On kinks and other travelling-wave solutions of a modified sine-Gordon equation

被引:5
|
作者
Fiore, Gaetano [1 ,2 ]
Guerriero, Gabriele [1 ]
Maio, Alfonso [1 ]
Mazziotti, Enrico [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
Josephson junctions; Dissipative sine-Gordon equation; Kinks; Travelling-waves solutions; 3RD-ORDER DISSIPATIVE PROBLEMS; JOSEPHSON JUNCTION; STABILITY; DYNAMICS; SOLITONS; UNIQUENESS; EXISTENCE;
D O I
10.1007/s11012-015-0143-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We give an exhaustive, non-perturbative classification of exact travelling-wave solutions of a perturbed sine-Gordon equation (on the real line or on the circle) which is used to describe the Josephson effect in the theory of superconductors and other remarkable physical phenomena. The perturbation of the equation consists of a constant forcing term and a linear dissipative term. On the real line candidate orbitally stable solutions with bounded energy density are either the constant one, or of kink (i.e. soliton) type, or of array-of-kinks type, or of "half-array-of-kinks" type. While the first three have unperturbed analogs, the last type is essentially new. We also propose a convergent method of successive approximations of the (anti)kink solution based on a careful application of the fixed point theorem.
引用
收藏
页码:1989 / 2006
页数:18
相关论文
共 50 条
  • [1] On kinks and other travelling-wave solutions of a modified sine-Gordon equation
    Gaetano Fiore
    Gabriele Guerriero
    Alfonso Maio
    Enrico Mazziotti
    Meccanica, 2015, 50 : 1989 - 2006
  • [2] Stationary multi-kinks in the discrete sine-Gordon equation
    Parker, Ross
    Kevrekidis, P. G.
    Aceves, Alejandro
    NONLINEARITY, 2022, 35 (02) : 1036 - 1060
  • [3] Wobbling double sine-Gordon kinks
    Campos, Joao G. F.
    Mohammadi, Azadeh
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
  • [4] Scattering of the double sine-Gordon kinks
    Gani, Vakhid A.
    Marjaneh, Aliakbar Moradi
    Askari, Alidad
    Belendryasova, Ekaterina
    Saadatmand, Danial
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (04):
  • [5] The traveling wave solutions of the perturbed double Sine-Gordon equation
    Yang, Deniu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2241 - 2253
  • [6] Exact solutions to the sine-Gordon equation
    Aktosun, Tuncay
    Demontis, Francesco
    van der Mee, Cornelis
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)
  • [7] Scattering of kinks in noncanonical sine-Gordon Model
    Takyi, Ishmael
    Barnes, Benedict
    Tornyeviadzi, Hoese M.
    Ackora-Prah, Joseph
    TURKISH JOURNAL OF PHYSICS, 2022, 46 (01): : 37 - 50
  • [8] Persistence of kink and anti-kink wave solutions for the perturbed double sine-Gordon equation
    Zhang, Huiyang
    Xia, Yonghui
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [9] Breather and soliton wave families for the sine-Gordon equation
    Vitanov, NK
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1977): : 2409 - 2423
  • [10] Evolution of two-dimensional standing and travelling breather solutions for the Sine-Gordon equation
    Minzoni, AA
    Smyth, NF
    Worthy, AL
    PHYSICA D-NONLINEAR PHENOMENA, 2004, 189 (3-4) : 167 - 187