Rotating periodic solutions for asymptotically linear second-order Hamiltonian systems with resonance at infinity

被引:31
作者
Liu, Guanggang [1 ,2 ,4 ]
Li, Yong [1 ,2 ,3 ]
Yang, Xue [1 ,2 ,3 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Jilin, Peoples R China
[3] Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R China
[4] Liaocheng Univ, Sch Math Sci, Liaocheng 252000, Peoples R China
关键词
Morse theory; rotating periodic solutions; second-order Hamiltonian systems; CRITICAL-POINT; DIFFERENTIAL-EQUATIONS; MORSE-THEORY; COMPUTATIONS; THEOREMS;
D O I
10.1002/mma.4518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of asymptotically linear second-order Hamiltonian system with resonance at infinity. We will use Morse theory combined with the technique of penalized functionals to obtain the existence of rotating periodic solutions.
引用
收藏
页码:7139 / 7150
页数:12
相关论文
共 50 条
[41]   Infinitely Many Periodic Solutions for a Class of Second-order Hamiltonian Systems [J].
Ming-hai YANG ;
Yue-fen CHEN ;
Yan-fang XUE .
Acta Mathematicae Applicatae Sinica, 2016, 32 (01) :231-238
[42]   Solutions of a second-order Hamiltonian system with periodic boundary conditions [J].
Tang, X. H. ;
Meng, Qiong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3722-3733
[43]   Infinitely many periodic solutions for a class of new superquadratic second-order Hamiltonian systems [J].
Li, Chun ;
Agarwal, Ravi P. ;
Pasca, Daniel .
APPLIED MATHEMATICS LETTERS, 2017, 64 :113-118
[44]   Periodic Solutions of Asymptotically Linear Hamiltonian Systems without Twist Conditions [J].
Cheng, Rong ;
Zhang, Dongfeng .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (05) :445-452
[45]   Periodic solutions for second order Hamiltonian systems [J].
Qiongfen Zhang ;
X. H. Tang .
Applications of Mathematics, 2012, 57 :407-425
[46]   Periodic solutions for second order Hamiltonian systems [J].
Zhang, Qiongfen ;
Tang, X. H. .
APPLICATIONS OF MATHEMATICS, 2012, 57 (04) :407-425
[47]   PERIODIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS [J].
D'Agui, Giuseppina ;
Livrea, Roberto .
MATEMATICHE, 2011, 66 (01) :125-+
[48]   Periodic solutions of a class of nonautonomous second-order Hamiltonian systems with nonsmooth potentials [J].
Yan Ning ;
Tianqing An .
Boundary Value Problems, 2015
[49]   The existence of periodic solutions of non-autonomous second-order Hamiltonian systems [J].
Aizmahin, Nurbek ;
An, Tianqing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (14) :4862-4867
[50]   Five periodic solutions for a class of subquadratic second-order even Hamiltonian systems [J].
Ou, Hua-Xin ;
Li, Chun .
APPLIED MATHEMATICS LETTERS, 2022, 133