A Broadband Low-Profile Transmitarray Antenna by Using Differentially Driven Transmission Polarizer With True-Time Delay

被引:22
作者
Cao, Yue [1 ,2 ]
Yang, Wanchen [3 ,4 ]
Xue, Quan [3 ,4 ]
Che, Wenquan [3 ,4 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Peoples R China
[2] Nantong Univ, Sch Elect & Informat, Nantong 226019, Peoples R China
[3] South China Univ Technol, Sch Elect & Informat Engn, Guangdong Key Lab Millimeter Waves & Terahertz, Guangzhou 510641, Peoples R China
[4] Pazhou Lab, Guangzhou 510330, Peoples R China
基金
中国国家自然科学基金;
关键词
Broadband antennas; Reflector antennas; Couplings; Antenna measurements; Transmitting antennas; Surface waves; Slot antennas; Folded transmitarray (FTA); low profile; planar lens; transmission polarizer (TP); true-time delay (TTD) lines; wideband; LENS ANTENNA;
D O I
10.1109/TAP.2021.3111604
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A broadband low-profile folded transmitarray (FTA) is proposed and investigated, in which a novel wideband transmission polarizer (TP) is used to realize low-profile design. The proposed TP, mainly consisting of a differential-fed grid-slotted patch antenna, can realize high-efficiency transmission and polarization selection simultaneously within a wideband frequency range. Moreover, the proposed TP can realize linear transmission phase because of the true-time delay (TTD) technique. Owing to the function of polarization selection and linear transmission phase, the TP can be used as antenna element for a FTA. A 140-element FTA is designed and fabricated by combining the TP with a broadband polarization rotation reflecting surface (PRRS). The measured radiation patterns agree well with the simulated results, and a peak gain of 24 dBi and maximum aperture efficiency of 44.7% are achieved. Furthermore, -1 and -3 dB gain bandwidth with 25.9% and 33.3% are also experimentally demonstrated in the proposed FTA, respectively.
引用
收藏
页码:1529 / 1534
页数:6
相关论文
共 24 条
[1]   Bandwidth Improvement Methods of Transmitarray Antennas [J].
Abdelrahman, Ahmed H. ;
Nayeri, Payam ;
Elsherbeni, Atef Z. ;
Yang, Fan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (07) :2946-2954
[2]   Angle of Incidence Effects in Reflectarray Antenna Design [J].
Almajali, E'qab R. F. ;
McNamara, Derek A. .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2016, 58 (05) :52-64
[3]   Novel Wideband Polarization Rotating Metasurface Element and Its Application for Wideband Folded Reflectarray [J].
Cao, Yue ;
Che, Wenquan ;
Yang, Wanchen ;
Fan, Chong ;
Xue, Quan .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (03) :2118-2127
[4]   A C-Band Flat Lens Antenna With Double-Ring Slot Elements [J].
Chen, Yang ;
Chen, Lei ;
Yu, Jian-Feng ;
Shi, Xiao-Wei .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2013, 12 :341-344
[5]  
Clemente A, 2019, EUR MICROW CONF, P232, DOI [10.23919/EuMC.2019.8910753, 10.23919/eumc.2019.8910753]
[6]   A Novel PRAMC-Based Ultralow- Profile Transmitarray Antenna by Using Ray Tracing Principle [J].
Fan, Chong ;
Che, Wenquan ;
Yang, Wanchen ;
He, Shanhong .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (04) :1779-1787
[7]   Octave Bandwidth Transmitarrays With a Flat Gain [J].
Feng, Peng-Yu ;
Qu, Shi-Wei ;
Yang, Shiwen .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (10) :5231-5238
[8]   Broadband Folded Transmitarray Antenna Based on an Ultrathin Transmission Polarizer [J].
Ge, Yuehe ;
Lin, Chengxiu ;
Liu, Yujie .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (11) :5974-5981
[9]   Broadband Transmitarray Antenna Design Using Polarization-Insensitive Frequency Selective Surfaces [J].
Jazi, M. Niroo ;
Chaharmir, Mohammad Reza ;
Shaker, Jafar ;
Sebak, Abdel R. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (01) :99-108
[10]   Compact Folded Fresnel Zone Plate Lens Antenna for mm-Wave Communications [J].
Kodnoeih, Mohammad Reza Dehghani ;
Letestu, Yoann ;
Sauleau, Ronan ;
Cruz, Eduardo Motta ;
Doll, Andre .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (05) :873-876