Physicochemical surface properties of bacterial cellulose/polymethacrylate nanocomposites: an approach by inverse gas chromatography

被引:22
作者
Faria, Marisa [1 ]
Vilela, Carla [2 ]
Silvestre, Armando J. D. [2 ]
Deepa, Bhanumathyamma [3 ,4 ]
Resnik, Matic [5 ]
Freire, Carmen S. R. [2 ]
Cordeiro, Nereida [1 ,6 ]
机构
[1] Univ Madeira, Fac Exact Sci & Engn, LB3, P-9000390 Funchal, Portugal
[2] Univ Aveiro, Dept Chem, CICECO Aveiro Inst Mat, Campus Santiago, P-3810193 Aveiro, Portugal
[3] CMS Coll, Dept Chem, Kottayam 686001, Kerala, India
[4] Bishop Moore Coll, Dept Chem, Mavelikara 690101, Kerala, India
[5] Jozef Stefan Inst, Dept Surface Engn & Optoelect, IJS, Ljubljana, Slovenia
[6] Univ Porto, CIIMAR Interdisciplinary Ctr Marine & Environm Re, P-4450208 Porto, Portugal
关键词
Bacterial cellulose; Nanocomposites; Poly(glycidyl methacrylate); Poly(poly(ethylene glycol) methacrylate); Surface properties; Inverse gas chromatography; CELLULOSE; NANOCELLULOSE; POLYMERIZATION; MICROSPHERES; COMPOSITES; MEMBRANES; ACID;
D O I
10.1016/j.carbpol.2018.10.110
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nanocomposites of poly(glycidyl methacrylate) and bacterial cellulose (BC), or poly(poly(ethylene glycol) methacrylate) and BC were produced via the in-situ polymerization of methacrylic monomers, inside the BC 3D network. The nanocomposites surface properties were evaluated by inverse gas chromatography (IGC). The dispersive component of surface energy (gamma(d)(s)) varied between 35.64 - 83.05 mJ M-2 at 25 degrees C. The surface of the different nanocomposites has a predominant basic character (K-b/K-a = 4.20-4.31). Higher specific interactions with polar probes were found for the nanocomposite bearing pendant epoxide groups, that apart from the low surface area (S-BET = 0.83 m(2) g(-1)) and monolayer capacity (n(m) = 2.18 mu mol g(-1)), exhibits a high value of gamma(d)(s) (88.19 mJ M-2 at 20 degrees C). These results confirm the potential of IGC to differentiate between nanocomposites with different surface functional groups and to predict their potential interactions with living tissues, body fluids and other materials.
引用
收藏
页码:86 / 93
页数:8
相关论文
共 36 条
[1]   Influence of the matrix and polymerization methods on the synthesis of BC/PANi nanocomposites: an IGC study [J].
Alonso, Emanuel ;
Faria, Marisa ;
Ferreira, Artur ;
Cordeiro, Nereida .
CELLULOSE, 2018, 25 (04) :2343-2354
[2]   Conductive bacterial cellulose-polyaniline blends: Influence of the matrix and synthesis conditions [J].
Alonso, Emanuel ;
Faria, Marisa ;
Mohammadkazemi, Faranak ;
Resnik, Matic ;
Ferreira, Artur ;
Cordeiro, Nereida .
CARBOHYDRATE POLYMERS, 2018, 183 :254-262
[3]   Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery [J].
Amin, Mohd Cairul Iqbal Mohd ;
Ahmad, Naveed ;
Halib, Nadia ;
Ahmad, Ishak .
CARBOHYDRATE POLYMERS, 2012, 88 (02) :465-473
[4]   Surface properties and porosity of highly porous, nanostructured cellulose II particles [J].
Beaumont, Marco ;
Kondor, Anett ;
Plappert, Sven ;
Mitterer, Claudia ;
Opietnik, Martina ;
Potthast, Antje ;
Rosenau, Thomas .
CELLULOSE, 2017, 24 (01) :435-440
[5]   Copolymers of 4(5)-vinylimidazole and ethyleneglycol methacrylate phosphate: Synthesis and proton conductivity properties [J].
Bozkurt, A. ;
Karadedeli, B. .
REACTIVE & FUNCTIONAL POLYMERS, 2007, 67 (04) :348-354
[6]   Anisotropic swelling and mechanical behavior of composite bacterial cellulose-poly(acrylamide or acrylamide-sodium acrylate) hydrogels [J].
Buyanov, A. L. ;
Gofman, I. V. ;
Revel'skaya, L. G. ;
Khripunov, A. K. ;
Tkachenko, A. A. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2010, 3 (01) :102-111
[7]   In-situ glyoxalization during biosynthesis of bacterial cellulose [J].
Castro, Cristina ;
Cordeiro, Nereida ;
Faria, Marisa ;
Zuluaga, Robin ;
Putaux, Jean-Luc ;
Filpponen, Ilari ;
Velez, Lina ;
Rojas, Orlando J. ;
Ganan, Piedad .
CARBOHYDRATE POLYMERS, 2015, 126 :32-39
[8]   Natural fibers characterization by inverse gas chromatography [J].
Cordeiro, N. ;
Gouveia, C. ;
Moraes, A. G. O. ;
Amico, S. C. .
CARBOHYDRATE POLYMERS, 2011, 84 (01) :110-117
[9]   Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study [J].
Deepa, B. ;
Abraham, Eldho ;
Cordeiro, Nereida ;
Mozetic, Miran ;
Mathew, Aji P. ;
Oksman, Kristiina ;
Faria, Marisa ;
Thomas, Sabu ;
Pothan, Laly A. .
CELLULOSE, 2015, 22 (02) :1075-1090
[10]   Antimicrobial bacterial cellulose nanocomposites prepared by in situ polymerization of 2-aminoethyl methacrylate [J].
Figueiredo, Ana R. P. ;
Figueiredo, Andrea G. P. R. ;
Silva, Nuno H. C. S. ;
Barros-Timmons, Ana ;
Almeida, Adelaide ;
Silvestre, Armando J. D. ;
Freire, Carmen S. R. .
CARBOHYDRATE POLYMERS, 2015, 123 :443-453