Approximation solvability of a class of nonlinear set-valued variational inclusions involving (A, η)-monotone mappings

被引:68
作者
Verma, Ram U. [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
(A; eta)-monotone mapping; class of nonlinear set-valued variational inclusions; resolvent operator method; iterative algorithm;
D O I
10.1016/j.jmaa.2007.01.114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new class of nonlinear set-valued variational inclusions involving (A, eta)-monotone mappings in a Hilbert space setting is introduced, and then based on the generalized resolvent operator technique associated with (A, eta)-monotonicity, the existence and approximation solvability of solutions using an iterative algorithm is investigated. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:969 / 975
页数:7
相关论文
共 31 条
[1]   Perturbed algorithms and sensitivity analysis for a general class of variational inclusions [J].
Adly, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 201 (02) :609-630
[2]   Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings [J].
Agarwal, RP ;
Huang, NJ ;
Cho, YJ .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (06) :807-828
[3]  
AHMAD R, 2002, APPL MATH LETT, V13, P23
[4]  
Chang SS., 2002, ITERATIVE METHODS NO
[5]  
Cho YJ, 2004, J KOREAN MATH SOC, V41, P489
[6]   Perturbed proximal point algorithms for general quasi-variational-like inclusions [J].
Ding, XP ;
Luo, CL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 113 (1-2) :153-165
[7]  
Douglas H. H., 1956, Trans. Am. Math. Soc., V82, P421, DOI DOI 10.1090/S0002-9947-1956-0084194-4
[8]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[9]   A new system of variational inclusions with (H,η)-monotone operators in hilbert spaces [J].
Fang, YP ;
Huang, NJ ;
Thompson, HB .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (2-3) :365-374
[10]   H-monotone operator and resolvent operator technique for variational inclusions [J].
Fang, YP ;
Huang, NJ .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (2-3) :795-803