Dispersion estimates for one-dimensional Schrodinger and Klein-Gordon equations revisited

被引:12
作者
Egorova, I. E. [1 ]
Kopylova, E. A. [2 ,3 ]
Marchenko, V. A. [1 ]
Teschl, G. [2 ,4 ]
机构
[1] B Verkin Inst Low Temp Phys, Kharkov, Ukraine
[2] Univ Vienna, Vienna, Austria
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[4] Int Erwin Schrodinger Inst Math Phys, Vienna, Austria
基金
奥地利科学基金会;
关键词
Schrodinger equation; Klein-Gordon equation; dispersion estimates; scattering; INVERSE SCATTERING; ASYMPTOTIC EXPANSIONS; WAVE-EQUATIONS; LINE; OPERATORS;
D O I
10.1070/RM9708
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for a one-dimensional Schrodinger operator with a potential whose first moment is integrable the elements of the scattering matrix are in the unital Wiener algebra of functions with integrable Fourier transforms. This is then used to derive dispersion estimates for solutions of the associated Schrodinger and Klein-Gordon equations. In particular, the additional decay conditions are removed in the case where a resonance is present at the edge of the continuous spectrum.
引用
收藏
页码:391 / 415
页数:25
相关论文
共 29 条
[1]  
[Anonymous], HOKKAIDO MATH J, DOI 10.14492/hokmj/1249046361
[2]  
[Anonymous], 2010, Handbook of Mathematical Functions
[3]   On asymptotic stability of solitary waves for nonlinear Schrodinger equations [J].
Buslaev, VS ;
Sulem, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (03) :419-475
[4]   Lp-boundedness of the wave operator for the one dimensional Schrodinger operator [J].
D'Ancona, Piero ;
Fanelli, Luca .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (02) :415-438
[5]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[6]   Dispersion estimates for one-dimensional discrete Schrodinger and wave equations [J].
Egorova, Iryna ;
Kopylova, Elena ;
Teschl, Gerald .
JOURNAL OF SPECTRAL THEORY, 2015, 5 (04) :663-696
[7]   Dispersive estimates for Schrodinger operators in dimensions one and three [J].
Goldberg, M ;
Schlag, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (01) :157-178
[8]   Transport in the one-dimensional schrodinger equation [J].
Goldberg, Michael .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) :3171-3179
[9]  
Huseinov M., 1985, DIFF URAVN, V21, p[11, 1993]
[10]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980