Entwining structures in monoidal categories

被引:19
作者
Mesablishvili, Bachuki [1 ]
机构
[1] Razmadze Math Inst, GE-0193 Tbilisi, Georgia
关键词
entwining module; (braided) monoidal category; Hopf algebra;
D O I
10.1016/j.jalgebra.2007.08.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Interpreting entwining structures as special instances of J. Beck's distributive law, the concept of entwining module can be generalized for the setting of arbitrary monoidal category. In this paper, we use the distributive law formalism to extend in this setting basic properties of entwining modules. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2496 / 2517
页数:22
相关论文
共 14 条
[1]  
[Anonymous], 1971, GRADUATE TEXTS MATH
[2]  
Barr M., 1985, GRUNDLEHREN MATH WIS, V278
[3]  
Beck Jon, 1969, Sem. on Triples and Categorical Homology Theory, P119
[4]  
Borceux F., 1994, HDB CATEGORICAL ALGE, V2
[5]   Coalgebra bundles [J].
Brzezinski, T ;
Majid, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (02) :467-492
[6]   The structure of corings: Induction functors, Maschke-type theorem, and Frobenius and Galois-type properties [J].
Brzezinski, T .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (04) :389-410
[7]  
Brzezinski T., 2003, LONDON MATH SOC LECT, V309
[8]  
CAENEPEEL S, 2003, LECT NOTES MATH, V1787
[9]  
Dubuc E.J., 1970, Lecture Notes in Mathematics, V145
[10]   Comonads and Galois corings [J].
Gomez-Torrecillas, J. .
APPLIED CATEGORICAL STRUCTURES, 2006, 14 (5-6) :579-598