Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF

被引:83
作者
Biswas, Anjan [1 ,2 ]
Yildirim, Yakup [3 ]
Yasar, Emrullah [3 ]
Babatin, M. M. [2 ]
机构
[1] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[2] Al Imam Mohammad Ibn Saud Islamic Univ, Dept Math & Stat, Coll Sci, Riyadh 13318, Saudi Arabia
[3] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey
来源
OPTIK | 2017年 / 148卷
关键词
Conservation laws; Lie symmetry; FOLD DARBOUX TRANSFORMATION; SOLITON-SOLUTIONS;
D O I
10.1016/j.ijleo.2017.08.094
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The conservation laws for the Gerdjikov-Ivanov equation are derived by the aid of Lie symmetry analysis. The bright soliton solutions are subsequently applied to obtain the conserved quantities from the derived densities. Three forms of bright soliton solutions are utilized. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
[41]   1-Soliton solution and conservation laws for nonlinear wave equation in semiconductors [J].
Biswas, Anjan ;
Kara, A. H. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) :4289-4292
[42]   Conservation laws and exact solutions of a nonlinear acoustics equation by classical symmetry reduction [J].
Marquez, Almudena P. ;
Recio, Elena ;
Gandarias, Maria L. .
CHAOS SOLITONS & FRACTALS, 2025, 191
[43]   Investigation of solitons and conservation laws in an inhomogeneous optical fiber through a generalized derivative nonlinear Schrödinger equation with quintic nonlinearity [J].
Wafaa B. Rabie ;
Hamdy M. Ahmed ;
Mohammad Mirzazadeh ;
Arzu Akbulut ;
Mir Sajjad Hashemi .
Optical and Quantum Electronics, 2023, 55
[44]   Group formalism of Lie transformations, exact solutions and conservation laws of nonlinear time-fractional Kramers equation [J].
Momennezhad, Zahra ;
Nadjafikhah, Mehdi .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (12)
[45]   Conservation laws and Darboux transformation for the coupled cubic–quintic nonlinear Schrödinger equations with variable coefficients in nonlinear optics [J].
Feng-Hua Qi ;
Hong-Mei Ju ;
Xiang-Hua Meng ;
Juan Li .
Nonlinear Dynamics, 2014, 77 :1331-1337
[46]   On the invariance and conservation laws of the Biswas-Arshed equation in fiber-optic transmissions [J].
Aljohani, A. F. ;
Kara, A. H. .
OPTIK, 2019, 190 :50-53
[47]   Conservation laws and Darboux transformation for the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients in nonlinear optics [J].
Qi, Feng-Hua ;
Ju, Hong-Mei ;
Meng, Xiang-Hua ;
Li, Juan .
NONLINEAR DYNAMICS, 2014, 77 (04) :1331-1337
[48]   Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation [J].
Wang, Gangwei ;
Kara, A. H. ;
Fakhar, K. .
NONLINEAR DYNAMICS, 2015, 82 (1-2) :281-287
[49]   Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation [J].
Gangwei Wang ;
A. H. Kara ;
K. Fakhar .
Nonlinear Dynamics, 2015, 82 :281-287
[50]   The coupled derivative nonlinear Schrodinger equation: conservation laws, modulation instability and semirational solutions [J].
Xu, Tao ;
He, Guoliang .
NONLINEAR DYNAMICS, 2020, 100 (03) :2823-2837