Conservation laws for Gerdjikov-Ivanov equation in nonlinear fiber optics and PCF

被引:83
作者
Biswas, Anjan [1 ,2 ]
Yildirim, Yakup [3 ]
Yasar, Emrullah [3 ]
Babatin, M. M. [2 ]
机构
[1] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[2] Al Imam Mohammad Ibn Saud Islamic Univ, Dept Math & Stat, Coll Sci, Riyadh 13318, Saudi Arabia
[3] Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkey
来源
OPTIK | 2017年 / 148卷
关键词
Conservation laws; Lie symmetry; FOLD DARBOUX TRANSFORMATION; SOLITON-SOLUTIONS;
D O I
10.1016/j.ijleo.2017.08.094
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The conservation laws for the Gerdjikov-Ivanov equation are derived by the aid of Lie symmetry analysis. The bright soliton solutions are subsequently applied to obtain the conserved quantities from the derived densities. Three forms of bright soliton solutions are utilized. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
[31]   Optical solitons and conservation laws for driven nonlinear Schrodinger's equation with linear attenuation and detuning [J].
Masemola, P. ;
Kara, A. H. ;
Biswas, Anjan .
OPTICS AND LASER TECHNOLOGY, 2013, 45 :402-405
[32]   Conservation laws, bilinear Backlund transformations and solitons for a nonautonomous nonlinear Schrodinger equation with external potentials [J].
Chai, Jun ;
Tian, Bo ;
Xie, Xi-Yang ;
Sun, Ya .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 39 :472-480
[33]   Symmetry and conservation laws of the (2+1)-dimensional nonlinear Schrodinger-type equation [J].
Serikbayev, Nurzhan ;
Saparbekova, Akbota .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (10)
[34]   Investigation of solitons and conservation laws in an inhomogeneous optical fiber through a generalized derivative nonlinear Schrodinger equation with quintic nonlinearity [J].
Rabie, Wafaa B. B. ;
Ahmed, Hamdy M. M. ;
Mirzazadeh, Mohammad ;
Akbulut, Arzu ;
Hashemi, Mir Sajjad .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (09)
[35]   Conservation laws, bilinear forms and solitons for a fifth-order nonlinear Schrodinger equation for the attosecond pulses in an optical fiber [J].
Chai, Jun ;
Tian, Bo ;
Zhen, Hui-Ling ;
Sun, Wen-Rong .
ANNALS OF PHYSICS, 2015, 359 :371-384
[36]   Conservation laws, nonautonomous breathers and rogue waves for a higher-order nonlinear Schrodinger equation in the inhomogeneous optical fiber [J].
Su, Chuan-Qi ;
Qin, Nan ;
Li, Jian-Guang .
SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 :381-391
[37]   Nonlinear Self-Adjointness and Conservation Laws for the Hyperbolic Geometric Flow Equation [J].
Kênio A. A. Silva .
Journal of Nonlinear Mathematical Physics, 2013, 20 :28-43
[38]   VARIATIONAL APPROACHES TO CONSERVATION LAWS FOR A NONLINEAR EVOLUTION EQUATION WITH TIME DEPENDENT COEFFICIENTS [J].
Johnpillai, A. G. ;
Khalique, C. M. .
QUAESTIONES MATHEMATICAE, 2011, 34 (02) :235-245
[39]   Nonlinear self-adjointness and conservation laws for a porous medium equation with absorption [J].
Gandarias, M. L. ;
Bruzon, M. S. .
NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2013, 1562 :65-70
[40]   Nonlinear Self-Adjointness and Conservation Laws for the Hyperbolic Geometric Flow Equation [J].
Silva, Kenio A. A. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2013, 20 (01) :28-43