Solution formulas for cubic equations without or with constraints

被引:10
作者
Zhao, Ting [1 ,2 ]
Wang, Dongming [2 ]
Hong, Hoon [3 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, SKLSDE, LMIB, Beijing 100191, Peoples R China
[2] Univ Paris 06, CNRS, Lab Informat Paris 6, F-75252 Paris 05, France
[3] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Cubic polynomial; Solution formula; Root convention; Constraint; COMPLETE DISCRIMINATION SYSTEM; POLYNOMIALS; FIELDS;
D O I
10.1016/j.jsc.2011.02.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a convention (for square/cubic root) which provides correct interpretations of the Lagrange formula for all cubic polynomial equations with real coefficients. Using this convention, we also present a real solution formula for the general cubic equation with real coefficients under equality and inequality constraints. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:904 / 918
页数:15
相关论文
共 20 条
  • [11] LAGRANGE JL, 1770, NOUVEAUX MEMOIRES AC, V3, P205
  • [12] A complete discrimination system for polynomials with complex coefficients and its automatic generation
    Liang, SX
    Zhang, JZ
    [J]. SCIENCE IN CHINA SERIES E-TECHNOLOGICAL SCIENCES, 1999, 42 (02): : 113 - 128
  • [13] OCONNOR JJ, 2010, MACTUTOR HIST MATH A
  • [14] SMITH DE, 2003, HIST MATH, V2
  • [15] Wang DM, 2004, LECT NOTES ARTIF INT, V2930, P194
  • [16] THE COMPLEXITY OF LINEAR-PROBLEMS IN FIELDS
    WEISPFENNING, V
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1988, 5 (1-2) : 3 - 27
  • [17] WEISPFENNING V, 1997, APPL ALGEBR ENG COMM, V8, P3
  • [18] WEISPFENNING V, 1994, P INT S SYMB ALG COM, P258
  • [19] Yang L, 1996, SCI CHINA SER E, V39, P628
  • [20] YANG L, 1997, MM RES PREPRINTS, V15, P134