Solution formulas for cubic equations without or with constraints

被引:10
作者
Zhao, Ting [1 ,2 ]
Wang, Dongming [2 ]
Hong, Hoon [3 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, SKLSDE, LMIB, Beijing 100191, Peoples R China
[2] Univ Paris 06, CNRS, Lab Informat Paris 6, F-75252 Paris 05, France
[3] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Cubic polynomial; Solution formula; Root convention; Constraint; COMPLETE DISCRIMINATION SYSTEM; POLYNOMIALS; FIELDS;
D O I
10.1016/j.jsc.2011.02.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a convention (for square/cubic root) which provides correct interpretations of the Lagrange formula for all cubic polynomial equations with real coefficients. Using this convention, we also present a real solution formula for the general cubic equation with real coefficients under equality and inequality constraints. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:904 / 918
页数:15
相关论文
共 20 条
  • [1] Basu S., 2006, Algorithms and Computation in Mathematics
  • [2] BORTOLOTTI E, 1966, R BOMBELLI ALGEBRA B
  • [3] BROWN CW, 2004, QEPCAD QUANTIFIER EL
  • [4] Cardano G., 1993, Ars Magna or the Rules of Algebra
  • [5] COLLINS GE, 1991, J SYMB COMPUT, V12, P99
  • [6] Simplification of quantifier-free formulae over ordered fields
    Dolzmann, A
    Sturm, T
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (02) : 209 - 231
  • [7] DOLZMANN A, 1997, ACM SIGSAM B, V31, P2, DOI DOI 10.1145/261320.261324
  • [8] Gonzalez L., 1989, Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, ISSAC '89, P136, DOI 10.1145/74540.74558
  • [9] Guilbeau L., 1930, Math. News Lett, V5, P8, DOI DOI 10.2307/3027812
  • [10] Hong H, 2006, LECT NOTES ARTIF INT, V4120, P181