Weakly Supervised Video Salient Object Detection

被引:83
作者
Zhao, Wangbo [1 ]
Zhang, Jing [2 ,3 ]
Li, Long [1 ]
Barnes, Nick [2 ]
Liu, Nian [4 ]
Han, Junwei [1 ]
机构
[1] Northwestern Polytech Univ, Brain & Artificial Intelligence Lab, Xian, Peoples R China
[2] Australian Natl Univ, Canberra, ACT, Australia
[3] CSIRO, Canberra, ACT, Australia
[4] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
基金
美国国家科学基金会;
关键词
SEGMENTATION;
D O I
10.1109/CVPR46437.2021.01655
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the burden of data annotation, we present the first weakly supervised video salient object detection model based on relabeled "fixation guided scribble annotations". Specifically, an "Appearance-motion fusion module" and bidirectional ConvLSTM based framework are proposed to achieve effective multi-modal learning and long-term temporal context modeling based on our new weak annotations. Further, we design a novel foreground-background similarity loss to further explore the labeling similarity across frames. A weak annotation boosting strategy is also introduced to boost our model performance with a new pseudo-label generation technique. Extensive experimental results on six benchmark video saliency detection datasets illustrate the effectiveness of our solution(1).
引用
收藏
页码:16821 / 16830
页数:10
相关论文
共 49 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]  
Boykov YY, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, P105, DOI 10.1109/ICCV.2001.937505
[3]   One-Shot Video Object Segmentation [J].
Caelles, S. ;
Maninis, K. -K. ;
Pont-Tuset, J. ;
Leal-Taixe, L. ;
Cremers, D. ;
Van Gool, L. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5320-5329
[4]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[5]   SCOM: Spatiotemporal Constrained Optimization for Salient Object Detection [J].
Chen, Yuhuan ;
Zou, Wenbin ;
Tang, Yi ;
Li, Xia ;
Xu, Chen ;
Komodakis, Nikos .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (07) :3345-3357
[6]   Unsupervised learning from video to detect foreground objects in single images [J].
Croitoru, Ioana ;
Bogolin, Simion-Vlad ;
Leordeanu, Marius .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4345-4353
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   Structure-measure: A New Way to Evaluate Foreground Maps [J].
Fan, Deng-Ping ;
Cheng, Ming-Ming ;
Liu, Yun ;
Li, Tao ;
Borji, Ali .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4558-4567
[9]   Shifting More Attention to Video Salient Object Detection [J].
Fan, Deng-Ping ;
Wang, Wenguan ;
Cheng, Ming-Ming ;
Shen, Jianbing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :8546-8556
[10]   Efficient Hierarchical Graph-Based Video Segmentation [J].
Grundmann, Matthias ;
Kwatra, Vivek ;
Han, Mei ;
Essa, Irfan .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :2141-2148