The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials

被引:64
作者
Schiffmann, O. [1 ]
Vasserot, E. [2 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, F-75013 Paris, France
[2] Univ Paris 07, Inst Math Jussieu, F-75013 Paris, France
关键词
Hall algebras; elliptic curves; Macdonald polynomials; Eisenstein series; Cherednik algebras; QUANTUM GROUPS;
D O I
10.1112/S0010437X10004872
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit a strong link between the Hall algebra H(X) of an elliptic curve X defined over a finite field F(l) (or, more precisely, its spherical subalgebra U(X)(+)) and Cherednik's double affine Hecke algebras (H) double over dot(n) of type GL(n) for all n. This allows us to obtain a geometric construction of the Macdonald polynomials P(lambda)(q, t(-1)) in terms of certain functions (Eisenstein series) on the moduli space of semistable vector bundles on the elliptic curve X.
引用
收藏
页码:188 / 234
页数:47
相关论文
共 21 条
[1]  
[Anonymous], 2003, Abelian varieties, theta functions and the Fourier transform
[2]  
Atiyah MF., 1957, Proc. London Math. Soc., V7, P414, DOI 10.1112/plms/s3-7.1.414
[3]  
Bergeron F., 1999, Methods Appl. Anal., V6, P363
[4]  
BURBAN I, 2005, ARXIVANATHAG0505148
[5]  
CHEREDNIK I, 2004, DOUBLE AFFINE HECKE
[6]  
Ginzburg V., 1995, ARXIVALGGEOM9511007
[7]   HALL ALGEBRAS, HEREDITARY ALGEBRAS AND QUANTUM GROUPS [J].
GREEN, JA .
INVENTIONES MATHEMATICAE, 1995, 120 (02) :361-377
[8]   CHEVALLEY GROUPS OVER FUNCTION FIELDS AND AUTOMORPHIC FORMS [J].
HARDER, G .
ANNALS OF MATHEMATICS, 1974, 100 (02) :249-306
[9]   Involutions of double affine Hecke algebras [J].
Ion, B .
COMPOSITIO MATHEMATICA, 2003, 139 (01) :67-84
[10]  
IWAHORI N, 1965, PUBL MATH-PARIS, V25, P5, DOI DOI 10.1007/BF02684396