ARCH model and fractional Brownian motion

被引:5
|
作者
Bahamonde, Natalia [1 ]
Torres, Soledad [2 ]
Tudor, Ciprian A. [2 ,3 ]
机构
[1] Pontificia Univ Catolica Valparaiso, Inst Estadist, Valparaiso, Chile
[2] Univ Valparaiso, Fac Ingn, CIMFAV, Valparaiso, Chile
[3] Univ Lille 1, Lab Paul Painleve, Villeneuve Dascq, France
关键词
ARCH model; Fractional Brownian motion; Stationary process; Volatility;
D O I
10.1016/j.spl.2017.10.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study an extension of the ARCH model that includes the squared fractional Brownian motion. We study the statistical properties of the model as the conditions for the existence of a stationary solution and the moments of the process. We study their asymptotic behavior of the autocorrelation function of the squared of the process and we prove that the long memory property of the model holds. We illustrate our results by numerical simulations. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:70 / 78
页数:9
相关论文
共 50 条
  • [1] A fractional Brownian motion model of cracking
    Addison, PS
    Dougan, LT
    Ndumu, AS
    Mackenzie, WMC
    PARADIGMS OF COMPLEXITY: FRACTALS AND STRUCTURES IN THE SCIENCES, 2000, : 117 - 123
  • [2] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [3] Bayesian model selection with fractional Brownian motion
    Krog, Jens
    Jacobsen, Lars H.
    Lund, Frederik W.
    Wustner, Daniel
    Lomholt, Michael A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [4] Inventory Model with Fractional Brownian Motion Demand
    Lin, Jennifer Shu-Jen
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, PT I, 2010, 6421 : 252 - 259
  • [5] Analysis of a stochastic SIR model with fractional Brownian motion
    Caraballo, Tomas
    Keraani, Sami
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (05) : 895 - 908
  • [6] Asset Pricing Model Based on Fractional Brownian Motion
    Yan, Yu
    Wang, Yiming
    FRACTAL AND FRACTIONAL, 2022, 6 (02)
  • [7] Applicability of Fractional Brownian Motion model to pavement surface
    Zhu, N
    Wang, H
    Wang, Q
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 2, 2004, : 579 - 582
  • [8] The fractional Brownian motion as a model for an industrial airlift reactor
    Scheffer, R
    Maciel, R
    CHEMICAL ENGINEERING SCIENCE, 2001, 56 (02) : 707 - 711
  • [9] The fractional mixed fractional Brownian motion
    El-Nouty, C
    STATISTICS & PROBABILITY LETTERS, 2003, 65 (02) : 111 - 120
  • [10] Oscillatory Fractional Brownian Motion
    Bojdecki, T.
    Gorostiza, L. G.
    Talarczyk, A.
    ACTA APPLICANDAE MATHEMATICAE, 2013, 127 (01) : 193 - 215