Spectral characterization of multicone graphs

被引:21
作者
Wang, Jianfeng [1 ]
Zhao, Haixing [2 ]
Huang, Qiongxiang [3 ]
机构
[1] Qinghai Normal Univ, Dept Math, Xining 810008, Qinghai, Peoples R China
[2] Qinghai Normal Univ, Coll Comp Sci, Xining 810008, Qinghai, Peoples R China
[3] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
adjacency matrix; cospectral graph; spectral characteriztion; multicone graph; EIGENVALUES; RADIUS;
D O I
10.1007/s10587-012-0021-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A multicone graph is defined to be the join of a clique and a regular graph. Based on Zhou and Cho's result [B. Zhou, H.H. Cho, Remarks on spectral radius and Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130) (2005), 781-790], the spectral characterization of multicone graphs is investigated. Particularly, we determine a necessary and sufficient condition for two multicone graphs to be cospectral graphs and investigate the structures of graphs cospectral to a multicone graph. Additionally, lower and upper bounds for the largest eigenvalue of a multicone graph are given.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 15 条
[1]   GENERALIZED LINE GRAPHS [J].
CVETKOVIC, D ;
DOOB, M ;
SIMIC, S .
JOURNAL OF GRAPH THEORY, 1981, 5 (04) :385-399
[2]  
Cvetkovic D. M., 1995, SPECTRAOFGRAPHS THEO
[3]  
Erds P., 1966, studia sci. Math. Hungar., V1, P215
[4]  
Godsil C. D., 1982, Aequationes Math, V25, P257, DOI [DOI 10.1007/BF02189621, 10.1007/BF02189621]
[5]   ZUSAMMENHANG VON GRAPHENTHEORIE UND MO-THEORIE VON MOLEKELN MIT SYSTEMEN KONJUGIERTER BINDUNGEN [J].
GUNTHARD, HH ;
PRIMAS, H .
HELVETICA CHIMICA ACTA, 1956, 39 (06) :1645-1653
[6]   Enumeration of cospectral graphs [J].
Haemers, WH ;
Spence, E .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (02) :199-211
[7]  
Harary F., 1971, Bulletin of the London Mathematical Society, V3, P321
[8]   A sharp upper bound of the spectral radius of graphs [J].
Hong, Y ;
Shu, JL ;
Fang, KF .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (02) :177-183
[9]   A NOTE ON COSPECTRAL GRAPHS [J].
JOHNSON, CR ;
NEWMAN, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (01) :96-103
[10]   Some inequalities for the largest eigenvalue of a graph [J].
Nikiforov, V .
COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02) :179-189