Some new fixed point theorems for nonexpansive-type mappings in geodesic spaces

被引:0
作者
Shukla, Rahul [1 ]
Panicker, Rekha [1 ]
机构
[1] Walter Sisulu Univ, Dept Math Sci & Comp, ZA-5117 Mthatha, South Africa
关键词
hyperbolic metric space; nonexpansive mapping; minimization problem; NONLINEAR OPERATORS; CONVERGENCE; EQUILIBRIUM;
D O I
10.1515/math-2022-0497
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we present some new fixed point existence results for nonexpansive-type mappings in geodesic spaces. We also give a number of illustrative examples to settle our claims. We study the asymptotic behavior of Picard iterates generated by these class of mappings under different conditions. Finally, we approximate the solutions of the constrained minimization problem in the setting of Cartan, Alexandrov, and Toponogov (CAT(0)) spaces.
引用
收藏
页码:1246 / 1260
页数:15
相关论文
共 33 条
[1]   FIRMLY NONEXPANSIVE MAPPINGS IN CLASSES OF GEODESIC SPACES [J].
Ariza-Ruiz, David ;
Leustean, Laurentiu ;
Lopez-Acedo, Genaro .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (08) :4299-4322
[2]   Some fixed point results for (c)-mappings in Banach spaces [J].
Atailia, Sami ;
Redjel, Najeh ;
Dehici, Abdelkader .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (02)
[3]  
Bae J.S., 1984, J KOREAN MATH SOC, V21, P233
[4]   CONVERGENCE THEOREMS FOR SEQUENCES OF NONLINEAR OPERATORS IN BANACH SPACES [J].
BROWDER, FE .
MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) :201-&
[5]   NONEXPANSIVE PROJECTIONS ON SUBSETS OF BANACH SPACES [J].
BRUCK, RE .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 47 (02) :341-355
[6]   SPACES WITH NON-POSITIVE CURVATURE [J].
BUSEMANN, H .
ACTA MATHEMATICA, 1948, 80 (04) :259-310
[7]  
Busemann H., 1955, GEOMETRY GEODESICS
[8]  
Dehici A., 2020, J FIX POINT THEORY A, V22, P1
[9]   Metric fixed point theory on hyperconvex spaces: recent progress [J].
Rafa Espínola ;
Pepa Lorenzo .
Arabian Journal of Mathematics, 2012, 1 (4) :439-463
[10]  
Goebel K., 1983, TOPOL METHOD NONL AN, V21, P115, DOI DOI 10.1090/conm/021