Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications

被引:142
作者
Oezkumur, Emre [1 ]
Needham, James W. [2 ]
Bergstein, David A. [1 ]
Gonzalez, Rodrigo [5 ]
Cabodi, Mario [4 ]
Gershoni, Jonathan M. [6 ]
Goldberg, Bennett B. [1 ,2 ,3 ]
Uenlue, M. Selim [1 ,2 ,3 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
[4] Boston Univ, Ctr Nanosci & Nanobiotechnol, Boston, MA 02215 USA
[5] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[6] Tel Aviv Univ, Dept Cell Res & Immunol, IL-69978 Tel Aviv, Israel
关键词
dynamic monitoring; optical biosensor; protein microarray; immunoassay; interference;
D O I
10.1073/pnas.0711421105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct monitoring of primary molecular-binding interactions without the need for secondary reactants would markedly simplify and expand applications of high-throughput label-free detection methods. A simple interferometric technique is presented that monitors the optical phase difference resulting from accumulated biomolecular mass. As an example, 50 spots for each of four proteins consisting of BSA, human serum albumin, rabbit IgG, and protein G were dynamically monitored as they captured corresponding antibodies. Dynamic measurements were made at 26 pg/mm(2) SD per spot and with a detectable concentration of 19 ng/ml. The presented method is particularly relevant for protein microarray analysis because it is label-free, simple, sensitive, and easily scales to high-throughput.
引用
收藏
页码:7988 / 7992
页数:5
相关论文
共 30 条
[1]   Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy [J].
Ando, M ;
Arai, K ;
Takahashi, R ;
Heinzel, G ;
Kawamura, S ;
Tatsumi, D ;
Kanda, N ;
Tagoshi, H ;
Araya, A ;
Asada, H ;
Aso, Y ;
Barton, MA ;
Fujimoto, MK ;
Fukushima, M ;
Futamase, T ;
Hayama, K ;
Horikoshi, G ;
Ishizuka, H ;
Kamikubota, N ;
Kawabe, K ;
Kawashima, N ;
Kobayashi, Y ;
Kojima, Y ;
Kondo, K ;
Kozai, Y ;
Kuroda, K ;
Matsuda, N ;
Mio, N ;
Miura, K ;
Miyakawa, O ;
Miyama, SM ;
Miyoki, S ;
Moriwaki, S ;
Musha, M ;
Nagano, S ;
Nakagawa, K ;
Nakamura, T ;
Nakao, K ;
Numata, K ;
Ogawa, Y ;
Ohashi, M ;
Ohishi, N ;
Okutomi, S ;
Oohara, K ;
Otsuka, S ;
Saito, Y ;
Sasaki, M ;
Sato, S ;
Sekiya, A ;
Shibata, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :3950-3954
[2]   Colorimetric resonant reflection as a direct biochemical assay technique [J].
Cunningham, B ;
Li, P ;
Lin, B ;
Pepper, J .
SENSORS AND ACTUATORS B-CHEMICAL, 2002, 81 (2-3) :316-328
[3]   ELLIPSOMETRY AS A TOOL TO STUDY ADSORPTION BEHAVIOR OF SYNTHETIC AND BIOPOLYMERS AT AIR-WATER-INTERFACE [J].
DEFEIJTER, JA ;
BENJAMINS, J ;
VEER, FA .
BIOPOLYMERS, 1978, 17 (07) :1759-1772
[4]   Large-scale functional analysis using peptide or protein arrays [J].
Emili, AQ ;
Cagney, G .
NATURE BIOTECHNOLOGY, 2000, 18 (04) :393-397
[5]   ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) QUANTITATIVE ASSAY OF IMMUNOGLOBULIN-G [J].
ENGVALL, E ;
PERLMANN, P .
IMMUNOCHEMISTRY, 1971, 8 (09) :871-&
[6]   Biomolecular sensing using near-null single wavelength arrayed imaging reflectometry [J].
Gao, Tingjuan ;
Lu, Jinghui ;
Rothberg, Lewis J. .
ANALYTICAL CHEMISTRY, 2006, 78 (18) :6622-6627
[7]   Multiple reflectance interference spectroscopy measurements made in parallel for binding studies [J].
Gauglitz, G .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (06)
[8]   PROTEIN BLOTTING - PRINCIPLES AND APPLICATIONS [J].
GERSHONI, JM ;
PALADE, GE .
ANALYTICAL BIOCHEMISTRY, 1983, 131 (01) :1-15
[9]   Temperature-dependent refractive index determination from critical angle measurements: Implications for quantitative SPR sensing [J].
Grassi, JH ;
Georgiadis, RM .
ANALYTICAL CHEMISTRY, 1999, 71 (19) :4392-4396
[10]   Multi-analyte surface plasmon resonance biosensing [J].
Homola, J ;
Vaisocherová, H ;
Dostálek, J ;
Piliarik, M .
METHODS, 2005, 37 (01) :26-36