Coherent and Incoherent Impacts of Nanopillars on the Thermal Conductivity in Silicon Nanomembranes

被引:16
作者
Huang, Xin [1 ]
Ohori, Daisuke [2 ]
Yanagisawa, Ryoto [1 ]
Anufriev, Roman [1 ]
Samukawa, Seiji [2 ,3 ]
Nomura, Masahiro [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Tokyo 1538505, Japan
[2] Tohoku Univ, Inst Fluid Sci, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Adv Inst Mat Res AIMR, Sendai, Miyagi 9808577, Japan
关键词
nanopillars; silicon; thermal conductivity; surface nanostructuring; neutral-beam etching; Monte Carlo simulations; TRANSPORT; REDUCTION;
D O I
10.1021/acsami.0c06030
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanostructuring is the dominant approach for effective thermal conduction control in nanomaterials. In the past decade, researchers have been interested in thermal conduction control by the coherent effects in phononic crystal (PnC) systems. Recent theoretical works predicted that nanopillars on the surface of silicon membranes could cause a dramatic thermal conductivity reduction due to the phonon local resonances. However, this remarkable prediction has not been experimentally verified yet with the deep-nanoscale pillar-based PnCs. Here, we fabricate nanopillars on suspended silicon membranes using damageless neutral-beam etching and investigate the impact of nanopillars on the thermal conductivity of the membranes in the 4-300 K range. We found that thermal conductivity reduction caused by the nanopillars does not exceed 16%, which is much weaker than that predicted by the theoretical works. Moreover, this reduction remains temperature independent. These facts make the coherence an unlikely reason for the observed reduction. Indeed, our Monte Carlo simulations can reproduce the experimental results under a purely incoherent approximation. Our study shows that the coherent control of heat conduction by PnC nanostructures is more challenging to observe experimentally in reality than predicted in near-ideal modeling.
引用
收藏
页码:25478 / 25483
页数:6
相关论文
共 45 条
[1]   Thermal transport in phononic crystals and the observation of coherent phonon scattering at room temperature [J].
Alaie, Seyedhamidreza ;
Goettler, Drew F. ;
Su, Mehmet ;
Leseman, Zayd C. ;
Reinke, Charles M. ;
El-Kady, Ihab .
NATURE COMMUNICATIONS, 2015, 6
[2]   Aluminium nanopillars reduce thermal conductivity of silicon nanobeams [J].
Anufriev, R. ;
Yanagisawa, R. ;
Nomura, M. .
NANOSCALE, 2017, 9 (39) :15083-15088
[3]   Quasi-Ballistic Heat Conduction due to Levy Phonon Flights in Silicon Nanowires [J].
Anufriev, Roman ;
Gluchko, Sergei ;
Volz, Sebastian ;
Nomura, Masahiro .
ACS NANO, 2018, 12 (12) :11928-11935
[4]   Phonon heat conduction in corrugated silicon nanowires below the Casimir limit [J].
Blanc, Christophe ;
Rajabpour, Ali ;
Volz, Sebastian ;
Fournier, Thierry ;
Bourgeois, Olivier .
APPLIED PHYSICS LETTERS, 2013, 103 (04)
[5]   Reduction of phonon mean free path: From low-temperature physics to room temperature applications in thermoelectricity [J].
Bourgeois, Olivier ;
Tainoff, Dimitri ;
Tavakoli, Adib ;
Liu, Yanqing ;
Blanc, Christophe ;
Boukhari, Mustapha ;
Barski, Andre ;
Hadji, Emmanuel .
COMPTES RENDUS PHYSIQUE, 2016, 17 (10) :1154-1160
[6]  
Chen G., 2005, Nanoscale Energy Transport And Conversion: A Parallel Treatment Of Electrons, Molecules, Phonons, And Photons
[7]   Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes [J].
Cuffe, John ;
Eliason, Jeffrey K. ;
Maznev, A. A. ;
Collins, Kimberlee C. ;
Johnson, Jeremy A. ;
Shchepetov, Andrey ;
Prunnila, Mika ;
Ahopelto, Jouni ;
Sotomayor Torres, Clivia M. ;
Chen, Gang ;
Nelson, Keith A. .
PHYSICAL REVIEW B, 2015, 91 (24)
[8]   Nanophononic Metamaterial: Thermal Conductivity Reduction by Local Resonance [J].
Davis, Bruce L. ;
Hussein, Mahmoud I. .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[9]   Heat transport in silicon from first-principles calculations [J].
Esfarjani, Keivan ;
Chen, Gang ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2011, 84 (08)
[10]   Thermoelectric Enhancement of Silicon Membranes by Ultrathin Amorphous Films [J].
George, Anthony ;
Yanagisawa, Ryoto ;
Anufriev, Roman ;
He, Jinghan ;
Yoshie, Naoko ;
Tsujii, Naohito ;
Guo, Quansheng ;
Mori, Takao ;
Volz, Sebastian ;
Nomura, Masahiro .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) :12027-12031