Discrete-Time Predictor Feedback for Consensus of Multiagent Systems With Delays

被引:37
作者
Ponomarev, Anton [1 ,2 ]
Chen, Zhiyong [3 ]
Zhang, Hai-Tao [4 ,5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Automat, Wuhan 430074, Hubei, Peoples R China
[2] St Petersburg State Univ, Dept Control Theory, St Petersburg 199034, Russia
[3] Univ Newcastle, Sch Elect Engn & Comp, Callaghan, NSW 2308, Australia
[4] Huazhong Univ Sci & Technol, Sch Automat, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
[5] Huazhong Univ Sci & Technol, Key Lab Imaging Proc & Intelligence Control, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Consensus; multiagent systems (MASs); predictor feedback (PF); time delay; UNSTABLE LINEAR-SYSTEMS; INPUT DELAY; COMMUNICATION DELAYS; NONLINEAR-SYSTEMS; STABILIZATION; COMPENSATION;
D O I
10.1109/TAC.2017.2722860
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note develops a discrete-time predictor feedback control scheme for continuous-time multiagent systems with input and communication time delays. With measurement of locally available relative state signals among neighbored agents, the controller is able to achieve consensus for a large variety of linear open-loop agent dynamics, including exponentially unstable systems. Moreover, the new design can deal with arbitrarily large time delays in some special scenarios. The feature of discrete-time and relative state measurement substantially saves implementation cost compared with the existing methods in the literature. Numerical simulation demonstrates the effectiveness of the proposed theoretical design.
引用
收藏
页码:498 / 504
页数:7
相关论文
共 30 条
[1]   LINEAR-SYSTEMS WITH DELAYED CONTROLS - A REDUCTION [J].
ARTSTEIN, Z .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1982, 27 (04) :869-879
[2]   Stability of predictor-based feedback for nonlinear systems with distributed input delay [J].
Bekiaris-Liberis, Nikolaos ;
Krstic, Miroslav .
AUTOMATICA, 2016, 70 :195-203
[3]   Compensation of State-Dependent Input Delay for Nonlinear Systems [J].
Bekiaris-Liberis, Nikolaos ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (02) :275-289
[4]   Adaptive control scheme for uncertain time-delay systems [J].
Bresch-Pietri, Delphine ;
Chauvin, Jonathan ;
Petit, Nicolas .
AUTOMATICA, 2012, 48 (08) :1536-1552
[5]   Delay-Adaptive Predictor Feedback for Systems With Unknown Long Actuator Delay [J].
Bresch-Pietri, Delphine ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (09) :2106-2112
[6]   An Exact Method for the Stability Analysis of Linear Consensus Protocols With Time Delay [J].
Cepeda-Gomez, Rudy ;
Olgac, Nejat .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (07) :1734-1740
[7]   Output Synchronization on Strongly Connected Graphs [J].
Chopra, Nikhil .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (11) :2896-2901
[8]   Limitations of a class of stabilization methods for delay systems [J].
Engelborghs, K ;
Dambrine, M ;
Roose, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (02) :336-339
[9]  
Hu H., ISA T, DOI [10.1016/j.isatra.2017.01.002i, DOI 10.1016/J.ISATRA.2017.01.002I]
[10]   Nonlinear Stabilization Under Sampled and Delayed Measurements, and With Inputs Subject to Delay and Zero-Order Hold [J].
Karafyllis, Iasson ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (05) :1141-1154