Burning plasma achieved in inertial fusion

被引:368
作者
Zylstra, A. B. [1 ]
Hurricane, O. A. [1 ]
Callahan, D. A. [1 ]
Kritcher, A. L. [1 ]
Ralph, J. E. [1 ]
Robey, H. F. [2 ]
Ross, J. S. [1 ]
Young, C. V. [1 ]
Baker, K. L. [1 ]
Casey, D. T. [1 ]
Doppner, T. [1 ]
Divol, L. [1 ]
Hohenberger, M. [1 ]
Le Pape, S. [3 ]
Pak, A. [1 ]
Patel, P. K. [1 ]
Tommasini, R. [1 ]
Ali, S. J. [1 ]
Amendt, P. A. [1 ]
Atherton, L. J. [1 ]
Bachmann, B. [1 ]
Bailey, D. [1 ]
Benedetti, L. R. [1 ]
Berzak Hopkins, L. [1 ]
Betti, R. [4 ]
Bhandarkar, S. D. [1 ]
Biener, J. [1 ]
Bionta, R. M. [1 ]
Birge, N. W. [2 ]
Bond, E. J. [1 ]
Bradley, D. K. [1 ]
Braun, T. [1 ]
Briggs, T. M. [1 ]
Bruhn, M. W. [1 ]
Celliers, P. M. [1 ]
Chang, B. [1 ]
Chapman, T. [1 ]
Chen, H. [1 ]
Choate, C. [1 ]
Christopherson, A. R. [1 ]
Clark, D. S. [1 ]
Crippen, J. W. [5 ]
Dewald, E. L. [1 ]
Dittrich, T. R. [1 ]
Edwards, M. J. [1 ]
Farmer, W. A. [1 ]
Field, J. E. [1 ]
Fittinghoff, D. [1 ]
Frenje, J. [6 ]
Gaffney, J. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Los Alamos Natl Lab, Los Alamos, NM USA
[3] Ecole Polytech, Lab Utilisat Lasers Intenses Chez, Palaiseau, France
[4] Univ Rochester, Lab Laser Energet, Rochester, NY USA
[5] Genom Atom, San Diego, CA USA
[6] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] SLAC Natl Accelerator Lab, Menlo Pk, CA USA
[8] Atom Weap Estab, Aldermaston, England
[9] Diamond Mat, Freiburg, Germany
关键词
CONFINEMENT FUSION; IGNITION;
D O I
10.1038/s41586-021-04281-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Obtaining a burning plasma is a critical step towards self-sustaining fusion energy(1). A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule(2,3) through two different implosion concepts(4-7). These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics(3,8). Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study a-particle-dominated plasmas and burning-plasma physics in the laboratory.
引用
收藏
页码:542 / +
页数:15
相关论文
共 49 条
  • [11] The high velocity, high adiabat, "Bigfoot" campaign and tests of indirect-drive implosion scaling
    Casey, D. T.
    Thomas, C. A.
    Baker, K. L.
    Spears, B. K.
    Hohenberger, M.
    Khan, S. F.
    Nora, R. C.
    Weber, C. R.
    Woods, D. T.
    Hurricane, O. A.
    Callahan, D. A.
    Berger, R. L.
    Milovich, J. L.
    Patel, P. K.
    Ma, T.
    Pak, A.
    Benedetti, L. R.
    Millot, M.
    Jarrott, C.
    Landen, O. L.
    Bionta, R. M.
    MacGowan, B. J.
    Strozzi, D. J.
    Stadermann, M.
    Biener, J.
    Nikroo, A.
    Goyon, C. S.
    Izumi, N.
    Nagel, S. R.
    Bachmann, B.
    Volegov, P. L.
    Fittinghoff, D. N.
    Grim, G. P.
    Yeamans, C. B.
    Johnson, M. Gatu
    Frenje, J. A.
    Rice, N.
    Kong, C.
    Crippen, J.
    Jaquez, J.
    Kangas, K.
    Wild, C.
    [J]. PHYSICS OF PLASMAS, 2018, 25 (05)
  • [12] Integrated diagnostic analysis of inertial confinement fusion capsule performance
    Cerjan, Charles
    Springer, Paul T.
    Sepke, Scott M.
    [J]. PHYSICS OF PLASMAS, 2013, 20 (05)
  • [13] Thermonuclear ignition and the onset of propagating burn in inertial fusion implosions
    Christopherson, A. R.
    Betti, R.
    Lindl, J. D.
    [J]. PHYSICAL REVIEW E, 2019, 99 (02)
  • [14] Coppi B., 2021, ACAD AD SAKHAROV SCI
  • [15] Thermonuclear fusion rates for tritium plus deuterium using Bayesian methods
    de Souza, Rafael S.
    Boston, S. Reece
    Coc, Alain
    Iliadis, Christian
    [J]. PHYSICAL REVIEW C, 2019, 99 (01)
  • [16] Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility
    Doppner, T.
    Hinkel, D. E.
    Jarrott, L. C.
    Masse, L.
    Ralph, J. E.
    Benedetti, L. R.
    Bachmann, B.
    Celliers, P. M.
    Casey, D. T.
    Divol, L.
    Field, J. E.
    Goyon, C.
    Hatarik, R.
    Hohenberger, M.
    Izumi, N.
    Khan, S. F.
    Kritcher, A. L.
    Ma, T.
    MacGowan, B. J.
    Millot, M.
    Milovich, J.
    Nagel, S.
    Pak, A.
    Park, J.
    Patel, P.
    Tommasini, R.
    Volegov, P.
    Weber, C.
    Landen, O. L.
    Callahan, D. A.
    Hurricane, O. A.
    Edwards, M. J.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (04)
  • [17] Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies
    Glenzer, S. H.
    MacGowan, B. J.
    Michel, P.
    Meezan, N. B.
    Suter, L. J.
    Dixit, S. N.
    Kline, J. L.
    Kyrala, G. A.
    Bradley, D. K.
    Callahan, D. A.
    Dewald, E. L.
    Divol, L.
    Dzenitis, E.
    Edwards, M. J.
    Hamza, A. V.
    Haynam, C. A.
    Hinkel, D. E.
    Kalantar, D. H.
    Kilkenny, J. D.
    Landen, O. L.
    Lindl, J. D.
    LePape, S.
    Moody, J. D.
    Nikroo, A.
    Parham, T.
    Schneider, M. B.
    Town, R. P. J.
    Wegner, P.
    Widmann, K.
    Whitman, P.
    Young, B. K. F.
    Van Wonterghem, B.
    Atherton, L. J.
    Moses, E. I.
    [J]. SCIENCE, 2010, 327 (5970) : 1228 - 1231
  • [18] ITER: burning plasma physics experiment
    Green, BJ
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (05) : 687 - 706
  • [19] Integrated performance of large HDC-capsule implosions on the National Ignition Facility
    Hohenberger, M.
    Casey, D. T.
    Kritcher, A. L.
    Pak, A.
    Zylstra, A. B.
    Thomas, C. A.
    Baker, K. L.
    Le Pape, S.
    Bachmann, B.
    Berger, R. L.
    Biener, J.
    Clark, D. S.
    Divol, L.
    Doppner, T.
    Geppert-Kleinrath, V
    Hinkel, D.
    Huang, H.
    Kong, C.
    Landen, O. L.
    Milovich, J.
    Nikroo, A.
    Rice, N.
    Robey, H.
    Schoff, M.
    Sevier, J.
    Sequoia, K.
    Stadermann, M.
    Strozzi, D.
    Volegov, P. L.
    Weber, C.
    Wild, C.
    Woodworth, B.
    Callahan, D. A.
    Hurricane, O. A.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (11)
  • [20] Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF)
    Hopkins, L. Berzak
    LePape, S.
    Divol, L.
    Pak, A.
    Dewald, E.
    Ho, D. D.
    Meezan, N.
    Bhandarkar, S.
    Benedetti, L. R.
    Bunn, T.
    Biener, J.
    Crippen, J.
    Casey, D.
    Clark, D.
    Edgell, D.
    Fittinghoff, D.
    Gatu-Johnson, M.
    Goyon, C.
    Haan, S.
    Hatarik, R.
    Havre, M.
    Hinkel, D.
    Huang, H.
    Izumi, N.
    Jaquez, J.
    Jones, O.
    Khan, S.
    Kritcher, A.
    Kong, C.
    Kyrala, G.
    Landen, O.
    Ma, T.
    MacPhee, A.
    MacGowan, B.
    Mackinnon, A. J.
    Marinak, M.
    Milovich, J.
    Millot, M.
    Michel, P.
    Moore, A.
    Nagel, S. R.
    Nikroo, A.
    Patel, P.
    Ralph, J.
    Robey, H.
    Ross, J. S.
    Rice, N. G.
    Sepke, S.
    Smalyuk, V. A.
    Sterne, P.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (01)