A note on strange nonchaotic attractors

被引:0
作者
Keller, G [1 ]
机构
[1] UNIV ERLANGEN NURNBERG,INST MATH,D-91054 ERLANGEN,GERMANY
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of quasiperiodically forced time-discrete dynamical systems of two variables (theta,x) epsilon T-1 x R(+) with nonpositive Lyapunov exponents we prove the existence of an attractor <(Gamma)over bar> with the following properties: 1. <(Gamma)over bar> is the closure of the graph of a function x = phi(theta). It attracts Lebesgue-a.e. starting point in T-1 x R(+). The set {theta:phi(theta} not equal 0) is meager but has full 1-dimensional Lebesgue measure. 2. The omega-limit of Lebesgue-a.e. point in T-1 x R(+) is <(Gamma)over bar>, but for a residual set of points in T-1 x R(+) the omega limit is the circle {(theta,x) :x = 0} contained in <(Gamma)over bar>. 3. <(Gamma)over bar> is the topological support of a BRS measure. The corresponding measure theoretical dynamical system is isomorphic to the forcing rotation.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 6 条
[1]  
BELLACK U, 1995, PLEN FORSCH ERG AN E
[2]   STRANGE ATTRACTORS THAT ARE NOT CHAOTIC [J].
GREBOGI, C ;
OTT, E ;
PELIKAN, S ;
YORKE, JA .
PHYSICA D, 1984, 13 (1-2) :261-268
[3]   ERGODIC PROPERTIES OF INVARIANT-MEASURES FOR PIECEWISE MONOTONIC TRANSFORMATIONS [J].
HOFBAUER, F ;
KELLER, G .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (01) :119-140
[5]   CHARACTERIZING STRANGE NONCHAOTIC ATTRACTORS [J].
PIKOVSKY, AS ;
FEUDEL, U .
CHAOS, 1995, 5 (01) :253-260
[6]  
STPIERRE M, 1994, THESIS ERLANGEN