Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole

被引:73
作者
Lay, Makara [1 ,2 ]
Alberto Mendez, J. [1 ]
Delgado-Aguilar, Marc [1 ]
Bun, Kim Ngun [2 ]
Vilaseca, Fabiola [1 ]
机构
[1] Univ Girona, Dept Chem Engn Agr & Food Technol, LEPAMAP Grp, C Maria Aurelia Capmany 61, Girona 17071, Spain
[2] Inst Technol Cambodia, Dept Georesources & Geotech Engn, PP Box 86,Russian Conf Blvd, Phnom Penh, Cambodia
关键词
Cellulose nanofibers; Polypyrrole; Conductive nanopaper; Mechanical properties; Electrical conductivity; MICROFIBRILLATED CELLULOSE; NANOCELLULOSE; POLYMER; PAPER; ENERGY; NANOCOMPOSITES; COMPOSITES; FILMS; SUPERCAPACITORS; TRANSPARENT;
D O I
10.1016/j.carbpol.2016.06.102
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this work, we prepare cellulose nanopapers of high mechanical performance and with the electrical conductivity of a semiconductor. Cellulose nanofibers (CNF) from bleached softwood pulp were coated with polypyrrole (PPy) via in situ chemical polymerization, in presence of iron chloride (III) as oxidant agent. The structure and morphology of nanopapers were studied, as well as their thermal, mechanical and conductive properties. Nanopaper from pure CNF exhibited a very high tensile response (224 MPa tensile strength and 14.5 GPa elastic modulus). The addition of up to maximum 20% of polypyrrole gave CNF/PPy nanopapers of high flexibility and still good mechanical properties (94 MPa strength and 8.8 GPa modulus). The electrical conductivity of the resulting CNF/PPy nanopaper was of 5.2 10(-2) S cm(-1), with a specific capacitance of 7.4 F g(-1). The final materials are strong and conductive nanopapers that can find application as biodegradable flexible thin-film transistor (TFT) or as flexible biosensor. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:361 / 369
页数:9
相关论文
共 53 条
[1]   Effect of sonication conditions: Solvent, time, temperature and reactor type on the preparation of micron sized vermiculite particles [J].
Ali, Farman ;
Reinert, Laurence ;
Leveque, Jean-Marc ;
Duclaux, Laurent ;
Muller, Fabrice ;
Saeed, Shaukat ;
Shah, Syed Sakhawat .
ULTRASONICS SONOCHEMISTRY, 2014, 21 (03) :1002-1009
[2]  
Ansari R., 2006, E-J CHEM, V3, P186, DOI [DOI 10.1155/2006/860413, 10.1155/2006/860413]
[3]   One pot synthesis of polypyrrole silver nanocomposite on cotton fabrics for multifunctional property [J].
Babu, K. Firoz ;
Dhandapani, P. ;
Maruthamuthu, S. ;
Kulandainathan, M. Anbu .
CARBOHYDRATE POLYMERS, 2012, 90 (04) :1557-1563
[4]   Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerization sequence [J].
Beneventi, Davide ;
Alila, Sabrine ;
Boufi, Sami ;
Chaussy, Didier ;
Nortier, Patrice .
CELLULOSE, 2006, 13 (06) :725-734
[5]   Mechanical Performance and Transparency of Nanocellulose Reinforced Polymer Nanocomposites [J].
Boufi, Sami ;
Kaddami, Hamid ;
Dufresne, Alain .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2014, 299 (05) :560-568
[6]   Environmentally friendly reduction of a platinum catalyst precursor supported on polypyrrole [J].
Buitrago-Sierra, Robison ;
Jesus Garcia-Fernandez, M. ;
Mercedes Pastor-Blas, M. ;
Sepulveda-Escribano, Antonio .
GREEN CHEMISTRY, 2013, 15 (07) :1981-1990
[7]   Tailoring porosities and electrochemical properties of composites composed of microfibrillated cellulose and polypyrrole [J].
Carlsson, Daniel O. ;
Mihranyan, Albert ;
Stromme, Maria ;
Nyholm, Leif .
RSC ADVANCES, 2014, 4 (17) :8489-8497
[8]   Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties [J].
Carlsson, Daniel O. ;
Nystrom, Gustav ;
Zhou, Qi ;
Berglund, Lars A. ;
Nyholm, Leif ;
Stromme, Maria .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (36) :19014-19024
[9]  
Eisazadeh H., 2007, WORLD J CHEM, V2, P67
[10]  
Fukuzumi H., 2012, Studies on structures and properties of TEMPO-oxidized cellulose nanofibril films