Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure

被引:60
作者
Lu, Yu-Jung [1 ,2 ]
Sokhoyan, Ruzan [1 ]
Cheng, Wen-Hui [1 ]
Shirmanesh, Ghazaleh Kafaie [1 ]
Davoyan, Artur R. [1 ,3 ,4 ]
Pala, Ragip A. [1 ]
Thyagarajan, Krishnan [1 ]
Atwater, Harry A. [1 ,3 ]
机构
[1] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
[2] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
[3] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[4] CALTECH, Resnick Sustainabil Inst, Pasadena, CA 91125 USA
关键词
LIGHT-EMITTING-DIODES; REFLECTION; METAL;
D O I
10.1038/s41467-017-01870-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Emission control of colloidal quantum dots (QDs) is a cornerstone of modern high-quality lighting and display technologies. Dynamic emission control of colloidal QDs in an optoelectronic device is usually achieved by changing the optical pump intensity or injection current density. Here we propose and demonstrate a distinctly different mechanism for the temporal modulation of QD emission intensity at constant optical pumping rate. Our mechanism is based on the electrically controlled modulation of the local density of optical states (LDOS) at the position of the QDs, resulting in the modulation of the QD spontaneous emission rate, far-field emission intensity, and quantum yield. We manipulate the LDOS via field effect-induced optical permittivity modulation of an ultrathin titanium nitride (TiN) film, which is incorporated in a gated TiN/SiO2/Ag plasmonic heterostructure. The demonstrated electrical control of the colloidal QD emission provides a new approach for modulating intensity of light in displays and other optoelectronics.
引用
收藏
页数:8
相关论文
共 31 条
[1]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[2]   Low-Loss Plasmonic Metamaterials [J].
Boltasseva, Alexandra ;
Atwater, Harry A. .
SCIENCE, 2011, 331 (6015) :290-291
[3]   Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators [J].
Brar, Victor W. ;
Jang, Min Seok ;
Sherrott, Michelle ;
Lopez, Josue J. ;
Atwater, Harry A. .
NANO LETTERS, 2013, 13 (06) :2541-2547
[4]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[5]   Dynamic control of light emission faster than the lifetime limit using VO2 phase-change [J].
Cueff, Sebastien ;
Li, Dongfang ;
Zhou, You ;
Wong, Franklin J. ;
Kurvits, Jonathan A. ;
Ramanathan, Shriram ;
Zia, Rashid .
NATURE COMMUNICATIONS, 2015, 6
[6]  
Dimitrov S., 2015, PRINCIPLES LED LIGHT, DOI DOI 10.1017/CBO9781107278929
[7]   Dynamic nanophotonics [Invited] [J].
Ferrera, Marcello ;
Kinsey, Nathaniel ;
Shaltout, Amr ;
DeVault, Clayton ;
Shalaev, Vladimir ;
Boltasseva, Alexandra .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2017, 34 (01) :95-103
[8]   Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength [J].
Grandidier, Jonathan ;
des Francs, Gerard Colas ;
Massenot, Sebastien ;
Bouhelier, Alexandre ;
Markey, Laurent ;
Weeber, Jean-Claude ;
Finot, Christophe ;
Dereux, Alain .
NANO LETTERS, 2009, 9 (08) :2935-2939
[9]   VIEW FROM ... ECOC 2015 Lighting that talks [J].
Graydon, Oliver .
NATURE PHOTONICS, 2015, 9 (12) :785-786
[10]   Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities [J].
Hoang, Thang B. ;
Akselrod, Gleb M. ;
Mikkelsen, Maiken H. .
NANO LETTERS, 2016, 16 (01) :270-275