Utilizing the Cold Sintering Process for Flexible-Printable Electroceramic Device Fabrication

被引:75
作者
Baker, Amanda [1 ]
Guo, Hanzheng [1 ]
Guo, Jing [1 ]
Randall, Clive [1 ]
机构
[1] Penn State Univ, Mat Res Inst, Ctr Dielect & Piezoelect, Dept Mat Sci & Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
dielectric materials/properties; inks; low temperature; processing; sinter/sintering; HYDROXYAPATITE CERAMICS;
D O I
10.1111/jace.14467
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Conventional thermal sintering of ceramics is generally accomplished at high temperatures in kilns or furnaces. We have recently developed a procedure where the sintering of a ceramic can take place at temperatures below 200 degrees C, using aqueous solutions as transient solvents to control dissolution and precipitation and enable densification (i.e., sintering). We have named this approach as the "Cold Sintering Process" because of the drastic reduction in sintering temperature and time relative to the conventional thermal process. In this study, we fabricate basic monolithic capacitor array structures using a ceramic paste that is printed on nickel foils and polymer sheets, with silver electrodes. The sintered capacitors, using a dielectric Lithium Molybdenum Oxide ceramic, were then cold sintered and tested for capacitance, loss, and microstructural development. Simple structures demonstrate that this approach could provide a cost-effective strategy to print and densify different materials such as ceramics, polymers, and metals on the same substrate to obtain functional circuitry.
引用
收藏
页码:3202 / 3204
页数:3
相关论文
共 17 条
  • [1] Anomalous coarsening of nanocrystalline zinc oxide particles in humid air
    Dargatz, Benjamin
    Gonzalez-Julian, Jesus
    Guillon, Olivier
    [J]. JOURNAL OF CRYSTAL GROWTH, 2015, 419 : 69 - 78
  • [2] Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process
    Guo, Hanzheng
    Baker, Amanda
    Guo, Jing
    Randall, Clive A.
    [J]. ACS NANO, 2016, 10 (11) : 10606 - 10614
  • [3] Guo J., ANGEW CHEM INT EDIT, DOI [10.1002/anie.201605443R1and 10.1002/ange.201605443R1, DOI 10.1002/ANIE.201605443R1]
  • [4] Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials
    Guo, Jing
    Berbano, Seth S.
    Guo, Hanzheng
    Baker, Amanda L.
    Lanagan, Michael T.
    Randall, Clive A.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (39) : 7115 - 7121
  • [5] HAMER DW, 1972, THICK FILM HYBRID MI
  • [6] HYDROTHERMAL REACTION SINTERING OF PURE CR2O3
    HIRANO, S
    SOMIYA, S
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1976, 59 (11-1) : 534 - 534
  • [7] Hosoi K, 1996, J AM CERAM SOC, V79, P2771, DOI 10.1111/j.1151-2916.1996.tb09048.x
  • [8] Improvements and Modifications to Room-Temperature Fabrication Method for Dielectric Li2MoO4 Ceramics
    Kahari, Hanna
    Teirikangas, Merja
    Juuti, Jari
    Jantunen, Heli
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2015, 98 (03) : 687 - 689
  • [9] Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review
    Khan, Saleem
    Lorenzelli, Leandro
    Dahiya, Ravinder S.
    [J]. IEEE SENSORS JOURNAL, 2015, 15 (06) : 3164 - 3185
  • [10] New technique for bonding hydroxyapatite ceramics and titanium by the hydrothermal hot-pressing method
    Onoki, T
    Hosoi, K
    Hashida, T
    [J]. SCRIPTA MATERIALIA, 2005, 52 (08) : 767 - 770