Bounded solutions of nonlocal complex Ginzburg-Landau equations for a subcritical bifurcation

被引:5
作者
Volpert, V. A. [1 ]
Nepomnyashchy, A. A. [2 ]
Stanton, L. G. [1 ]
Golovin, A. A. [1 ]
机构
[1] NW Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[2] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
complex Ginzburg-Landau equation; nonlocal equations; Hopf bifurcation; subcritical instability;
D O I
10.1137/070687190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stable periodic solutions of a system of two nonlocal coupled complex Ginzburg-Landau (CGL) equations describing the dynamics of a subcritical Hopf bifurcation in a spatially extended system are found analytically in the limit of large dispersion coefficients. The domains in the parameter space where these solutions exist and are stable are determined. It is shown that the existence and stability depend on the sign of the coupling parameter and on the ratio of the dispersion coefficients. Numerical simulations of the system of nonlocal coupled CGL equations confirm the analytical results and exhibit other bounded dynamic regimes, such as standing waves and spatio-temporal chaos.
引用
收藏
页码:265 / 283
页数:19
相关论文
共 25 条
[1]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[2]   INTERACTION OF PULSATING AND SPINNING WAVES IN CONDENSED PHASE COMBUSTION [J].
BOOTY, MR ;
MARGOLIS, SB ;
MATKOWSKY, BJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (05) :801-843
[3]   INTERMITTENCY THROUGH MODULATIONAL INSTABILITY [J].
BRETHERTON, CS ;
SPIEGEL, EA .
PHYSICS LETTERS A, 1983, 96 (03) :152-156
[4]   Nonlinear dynamics of frontal polymerization with autoacceleration [J].
Comissiong, DMG ;
Gross, LK ;
Volpert, VA .
JOURNAL OF ENGINEERING MATHEMATICS, 2005, 53 (01) :59-78
[5]  
DAVIS SH, 2001, THEORY SOLIFICATION
[6]   Stability of small periodic waves for the nonlinear Schrodinger equation [J].
Gallay, Thierry ;
Haragus, Mariana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (02) :544-581
[7]   TRAVELING WAVES AND SPATIAL VARIATION IN THE CONVECTION OF A BINARY MIXTURE [J].
HEINRICHS, R ;
AHLERS, G ;
CANNELL, DS .
PHYSICAL REVIEW A, 1987, 35 (06) :2761-2764
[8]   NONLINEAR RESPONSE OF A MARGINALLY UNSTABLE PLANE PARALLEL FLOW TO A 2-DIMENSIONAL DISTURBANCE [J].
HOCKING, LM ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 326 (1566) :289-+
[9]   Stability of pulses in the master mode-locking equation [J].
Kapitula, T ;
Kutz, JN ;
Sandstede, B .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (04) :740-746
[10]   BURST AND COLLAPSE IN TRAVELING-WAVE CONVECTION OF A BINARY-FLUID [J].
KAPLAN, E ;
KUZNETSOV, E ;
STEINBERG, V .
PHYSICAL REVIEW E, 1994, 50 (05) :3712-3722