QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization

被引:5
|
作者
Sumita, Masato [1 ,3 ]
Terayama, Kei [1 ,2 ]
Tamura, Ryo [1 ,3 ,4 ,5 ]
Tsuda, Koji [1 ,4 ,5 ]
机构
[1] RIKEN Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[2] Yokohama City Univ, Grad Sch Med Life Sci, Yokohama 2300045, Japan
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba 3050044, Japan
[4] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa 2778561, Japan
[5] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst, Tsukuba 3050047, Japan
关键词
COMPUTATIONAL CHEMISTRY; AB-INITIO; DRIVEN; MOLECULES; DATABASE; LIBRARY; STATES;
D O I
10.1021/acs.jcim.2c00812
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
To obtain observable physical or molecular properties such as ionization potential and fluorescent wavelength with quantum chemical (QC) computation, multi-step computation manipulated by a human is required. Hence, automating the multi-step computational process and making it a black box that can be handled by anybody are important for effective database construction and fast realistic material design through the framework of black-box optimization where machine learning algorithms are introduced as a predictor. Here, we propose a Python library, QCforever, to automate the computation of some molecular properties and chemical phenomena induced by molecules. This tool just requires a molecule file for providing its observable properties, automating the computation process of molecular properties (for ionization potential, fluorescence, etc.) and output analysis for providing their multi-values for evaluating a molecule. Incorporating the tool in black-box optimization, we can explore molecules that have properties we desired within the limitation of QC computation.
引用
收藏
页码:4427 / 4434
页数:8
相关论文
共 50 条
  • [41] A method for convex black-box integer global optimization
    Larson, Jeffrey
    Leyffer, Sven
    Palkar, Prashant
    Wild, Stefan M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (02) : 439 - 477
  • [42] Efficient Global Optimization of Expensive Black-Box Functions
    Donald R. Jones
    Matthias Schonlau
    William J. Welch
    Journal of Global Optimization, 1998, 13 : 455 - 492
  • [43] A method for convex black-box integer global optimization
    Jeffrey Larson
    Sven Leyffer
    Prashant Palkar
    Stefan M. Wild
    Journal of Global Optimization, 2021, 80 : 439 - 477
  • [44] FFT-Based Approximations for Black-Box Optimization
    Lee, Madison
    Haddadin, Osama S.
    Javidi, Tara
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 205 - 209
  • [45] Optimal Black-Box Reductions Between Optimization Objectives
    Allen-Zhu, Zeyuan
    Hazan, Elad
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [46] Adaptive hyperparameter optimization for black-box adversarial attack
    Guan, Zhenyu
    Zhang, Lixin
    Huang, Bohan
    Zhao, Bihe
    Bian, Song
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1765 - 1779
  • [47] A Simple Proof for the Usefulness of Crossover in Black-Box Optimization
    Pinto, Eduardo Carvalho
    Doerr, Carola
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XV, PT II, 2018, 11102 : 29 - 41
  • [48] Online Black-Box Algorithm Portfolios for Continuous Optimization
    Baudis, Petr
    Posik, Petr
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 40 - 49
  • [49] Evolutionary Black-Box Topology Optimization: Challenges and Promises
    Guirguis, David
    Aulig, Nikola
    Picelli, Renato
    Zhu, Bo
    Zhou, Yuqing
    Vicente, William
    Iorio, Francesco
    Olhofer, Markus
    Matusiks, Wojciech
    Coello Coello, Carlos Artemio
    Saitou, Kazuhiro
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (04) : 613 - 633
  • [50] An evolutionary approach to black-box optimization on matrix manifolds?
    He, Xiaoyu
    Zhou, Yuren
    Chen, Zefeng
    Jiang, Siyu
    APPLIED SOFT COMPUTING, 2020, 97 (97)