QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization

被引:5
|
作者
Sumita, Masato [1 ,3 ]
Terayama, Kei [1 ,2 ]
Tamura, Ryo [1 ,3 ,4 ,5 ]
Tsuda, Koji [1 ,4 ,5 ]
机构
[1] RIKEN Ctr Adv Intelligence Project, Tokyo 1030027, Japan
[2] Yokohama City Univ, Grad Sch Med Life Sci, Yokohama 2300045, Japan
[3] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton WPI MANA, Tsukuba 3050044, Japan
[4] Univ Tokyo, Grad Sch Frontier Sci, Kashiwa 2778561, Japan
[5] Natl Inst Mat Sci, Res & Serv Div Mat Data & Integrated Syst, Tsukuba 3050047, Japan
关键词
COMPUTATIONAL CHEMISTRY; AB-INITIO; DRIVEN; MOLECULES; DATABASE; LIBRARY; STATES;
D O I
10.1021/acs.jcim.2c00812
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
To obtain observable physical or molecular properties such as ionization potential and fluorescent wavelength with quantum chemical (QC) computation, multi-step computation manipulated by a human is required. Hence, automating the multi-step computational process and making it a black box that can be handled by anybody are important for effective database construction and fast realistic material design through the framework of black-box optimization where machine learning algorithms are introduced as a predictor. Here, we propose a Python library, QCforever, to automate the computation of some molecular properties and chemical phenomena induced by molecules. This tool just requires a molecule file for providing its observable properties, automating the computation process of molecular properties (for ionization potential, fluorescence, etc.) and output analysis for providing their multi-values for evaluating a molecule. Incorporating the tool in black-box optimization, we can explore molecules that have properties we desired within the limitation of QC computation.
引用
收藏
页码:4427 / 4434
页数:8
相关论文
共 50 条
  • [21] Meta-Learning for Black-Box Optimization
    Vishnu, T. V.
    Malhotra, Pankaj
    Narwariya, Jyoti
    Vig, Lovekesh
    Shroff, Gautam
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 366 - 381
  • [22] Noisy Multiobjective Black-Box Optimization using Bayesian Optimization
    Wang, Hongyan
    Xu, Hua
    Yuan, Yuan
    Deng, Junhui
    Sun, Xiaomin
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 239 - 240
  • [23] Benchmark Test of Black-box Optimization Using D-Wave Quantum Annealer
    Koshikawa, Ami S.
    Ohzeki, Masayuki
    Kadowaki, Tadashi
    Tanaka, Kazuyuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (06)
  • [24] Black-Box Quantum State Preparation without Arithmetic
    Sanders, Yuval R.
    Low, Guang Hao
    Scherer, Artur
    Berry, Dominic W.
    PHYSICAL REVIEW LETTERS, 2019, 122 (02)
  • [25] Robust and Versatile Black-Box Certification of Quantum Devices
    Yang, Tzyh Haur
    Vertesi, Tamas
    Bancal, Jean-Daniel
    Scarani, Valerio
    Navascues, Miguel
    PHYSICAL REVIEW LETTERS, 2014, 113 (04)
  • [26] Surrogate-based methods for black-box optimization
    Ky Khac Vu
    D'Ambrosio, Claudia
    Hamadi, Youssef
    Liberti, Leo
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2017, 24 (03) : 393 - 424
  • [27] Implicitly and densely discrete black-box optimization problems
    Vicente, Luis Nunes
    OPTIMIZATION LETTERS, 2009, 3 (03) : 475 - 482
  • [28] Implicitly and densely discrete black-box optimization problems
    Luis Nunes Vicente
    Optimization Letters, 2009, 3 : 475 - 482
  • [29] Bayesian Performance Analysis for Black-Box Optimization Benchmarking
    Calvo, Borja
    Shir, Ofer M.
    Ceberio, Josu
    Doerr, Carola
    Wang, Hao
    Back, Thomas
    Lozano, Jose A.
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 1789 - 1797
  • [30] An Evolution Strategy for Black-box Optimization on Matrix Manifold
    He X.-Y.
    Zhou Y.-R.
    Chen Z.-F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2020, 43 (09): : 1604 - 1623