Hyperplane arrangements, M-tame polynomials and twisted cohomology

被引:0
作者
Dimca, A [1 ]
机构
[1] Univ Bordeaux 1, Lab Anal & Geometrie, F-33405 Talence, France
来源
COMMUTATIVE ALGEBRA, SINGULARITIES AND COMPUTER ALGEBRA | 2003年 / 115卷
关键词
hyperplane arrangement; local system cohomology; monodromy; Alexander invariants;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new relation between a class of complex polynomials with a good behavior at the infinity studied by A. Nemethi and A. Zaharia and the cohomology groups of affine complex hyperplane arrangement complements is introduced and explored. This approach gives in particular new upper-bounds for the dimension of the twisted cohomology groups of line arrangement complements in the complex affine plane.
引用
收藏
页码:113 / 126
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 1992, SINGULARITIES TOPOLO
[2]  
[Anonymous], 1987, VIEWEG ADV LECT MATH
[3]  
Artal-Bartolo E., 1998, PROGR MATH, V162, P317
[4]   MILNOR NUMBERS AND THE TOPOLOGY OF POLYNOMIAL HYPERSURFACES [J].
BROUGHTON, SA .
INVENTIONES MATHEMATICAE, 1988, 92 (02) :217-241
[5]  
COHEN D, AG0210409
[6]   ON MILNOR FIBRATIONS OF ARRANGEMENTS [J].
COHEN, DC ;
SUCIU, AI .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 :105-119
[7]   Triples of arrangements and local systems [J].
Cohen, DC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (10) :3025-3031
[8]  
DAMON J, 1999, LONDON MATH SOC LECT, V263, P25
[9]  
Dimca A, 1998, J ALGEBRAIC GEOM, V7, P771
[10]   On the connectivity of complex affine hypersurfaces, II [J].
Dimca, A ;
Paunescu, L .
TOPOLOGY, 2000, 39 (05) :1035-1043