A non-parametric independence test using permutation entropy

被引:83
作者
Matilla-Garcia, Mariano [1 ]
Marin, Manuel Ruiz [2 ]
机构
[1] Univ Nacl Educ Distancia, Fac Econ, Dept Econ Aplicada Cuantitat 1, Madrid 28040, Spain
[2] Univ Politecn Cartagena, Dept Metodos Cuantitat Informat, Cartagena, Spain
关键词
entropy; independence; i.i.d; invariance; nonlinear time series; symbolic dynamics; random walk;
D O I
10.1016/j.jeconom.2007.12.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the present paper we construct a new, simple, consistent and powerful test for independence by using symbolic dynamics and permutation entropy as a measure of serial dependence. We also give a standard asymptotic distribution of an affine transformation of the permutation entropy under the null hypothesis of independence. The test statistic and its standard limit distribution are invariant to any monotonic transformation. The test applies to time series with discrete or continuous distributions. Eventhough the test is based on entropy measures, it avoids smoothed non-parametric estimation. An application to several daily financial time series illustrates our approach. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 155
页数:17
相关论文
共 28 条
[1]  
[Anonymous], J TIME SER ANAL
[2]   Permutation entropy: A natural complexity measure for time series [J].
Bandt, C ;
Pompe, B .
PHYSICAL REVIEW LETTERS, 2002, 88 (17) :4
[3]  
BLUM JR, 1961, ANN MATH STAT, V32, P485, DOI 10.1214/aoms/1177705055
[4]  
Broock WA., 1996, ECONOMET REV, V15, P197, DOI [DOI 10.1080/07474939608800353, DOI 10.1080/2F07474939608800353.NUME]
[5]  
Ding Z., 1993, J EMPIR FINANC, V1, P83, DOI [DOI 10.1016/0927-5398(93)90006-D, 10.1016/0927-5398(93)90006-D]
[6]  
DUFOUR JM, 1982, CANAD J STATIST, V10, P1, DOI DOI 10.2307/3315073
[7]  
FERNANDEZRODRIG.F, 2005, J APPL ECONOMET, V20, P901
[8]  
GRANGER C, 1994, J TIME SER ANAL, V15, P371, DOI DOI 10.1111/J.1467-9892.1994.TB00200.X
[9]   A dependence metric for possibly nonlinear processes [J].
Granger, CW ;
Maasoumi, E ;
Racine, J .
JOURNAL OF TIME SERIES ANALYSIS, 2004, 25 (05) :649-669
[10]  
Hao B., 1998, Applied Symbolic Dynamics and Chaos