Discussion on Comparing Machine Learning Models for Health Outcome Prediction

被引:0
|
作者
Wojtusiak, Janusz [1 ]
Asadzadehzanjani, Negin [1 ]
机构
[1] George Mason Univ, Dept Hlth Adm & Policy, Hlth Informat Program, Fairfax, VA 22030 USA
来源
HEALTHINF: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 5: HEALTHINF | 2021年
关键词
Machine Learning; Health Data; Model Comparison;
D O I
10.5220/0010916600003123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This position paper argues the need for more details than simple statistical accuracy measures when comparing machine learning models constructed for patient outcome prediction. First, statistical accuracy measures are briefly discussed, including AROC, APRC, predictive accuracy, precision, recall, and their variants. Then, model correlation plots are introduced that compare outputs from two models. Finally, a more detailed analysis of inputs to the models is presented. The discussions are illustrated with two classification problems in predicting patient mortality and high utilization of medical services.
引用
收藏
页码:711 / 718
页数:8
相关论文
共 50 条
  • [1] Development of Machine Learning Models for Prediction of Smoking Cessation Outcome
    Lai, Cheng-Chien
    Huang, Wei-Hsin
    Chang, Betty Chia-Chen
    Hwang, Lee-Ching
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (05) : 1 - 10
  • [2] Clinically Consistent Prostate Cancer Outcome Prediction Models with Machine Learning
    Vallon, J. J.
    Panjwani, N.
    Ling, X.
    Vij, S.
    Pollom, E.
    Bagshaw, H. P.
    Srinivas, S.
    Leppert, J.
    Bayati, M.
    Buyyounouski, M. K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E126 - E127
  • [3] Machine learning models for neurocognitive outcome prediction in preterm born infants
    van Boven, Menne R.
    Bennis, Frank C.
    Onland, Wes
    Aarnoudse-Moens, Cornelieke S. H.
    Frings, Max
    Tran, Kevin
    Katz, Trixie A.
    Romijn, Michelle
    Hoogendoorn, Mark
    van Kaam, Anton H.
    Leemhuis, Aleid G.
    Oosterlaan, Jaap
    Konigs, Marsh
    PEDIATRIC RESEARCH, 2025,
  • [4] Comparing Machine Learning Algorithms And Regression Models For Predicting Functional Outcome In The Stratis Registry
    Jumaa, Mouhammad A.
    Zoghi, Zeinab
    Zaidi, Syed F.
    Mueller-Kronast, Nils
    Zaidat, Osama
    Castonguay, Alicia C.
    STROKE, 2022, 53
  • [5] Machine Learning for Clinical Outcome Prediction
    Shamout, Farah
    Zhu, Tingting
    Clifton, David A.
    IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 : 116 - 126
  • [6] Machine learning models for outcome prediction in thrombectomy for large anterior vessel occlusion
    Shirvani, Omid
    Warnat-Herresthal, Stefanie
    Savchuk, Ivan
    Bode, Felix J.
    Nitsch, Louisa
    Stoesser, Sebastian
    Ebrahimi, Taraneh
    von Danwitz, Niklas
    Asperger, Hannah
    Layer, Julia
    Meissner, Julius
    Thielscher, Christian
    Dorn, Franziska
    Lehnen, Nils
    Schultze, Joachim L.
    Petzold, Gabor C.
    Weller, Johannes M.
    ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2024, 11 (10): : 2696 - 2706
  • [7] Class imbalance in machine learning for neurosurgical outcome prediction: are our models valid?
    Staartjes, Victor E.
    Schroder, Marc L.
    JOURNAL OF NEUROSURGERY-SPINE, 2018, 29 (05) : 611 - 612
  • [8] Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models
    Benzakoun, Joseph
    Charron, Sylvain
    Turc, Guillaume
    Hassen, Wagih Ben
    Legrand, Laurence
    Boulouis, Gregoire
    Naggara, Olivier
    Baron, Jean-Claude
    Thirion, Bertrand
    Oppenheim, Catherine
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2021, 41 (11): : 3085 - 3096
  • [9] MACHINE LEARNING MODELS SIGNIFICANT IMPROVE OUTCOME PREDICTION AFTER CARDIAC ARREST
    Nanayakkara, Shane
    Fogarty, Sam
    Ross, Kelvin
    Milosevic, Zoran
    Richards, Brent
    Liew, Danny
    Stub, Dion
    Pilcher, David
    Kaye, David
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2018, 71 (11) : 775 - 775
  • [10] Comparing machine learning models for osteoporosis prediction in Tibetan middle aged and elderly women
    Wang, Peng
    Yin, Qiang
    Ding, Kangzhi
    Zhong, Huaichang
    Jia, Qundi
    Xiao, Zhasang
    Xiong, Hai
    SCIENTIFIC REPORTS, 2025, 15 (01):