The Quasi-Boundary Value Method for Identifying the Initial Value of the Space-Time Fractional Diffusion Equation

被引:22
|
作者
Yang, Fan [1 ]
Zhang, Yan [1 ]
Liu, Xiao [1 ]
Li, Xiaoxiao [1 ]
机构
[1] Lanzhou Univ Technol, Dept Math, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Space-time fractional diffusion equation; Ill-posed problem; quasi-boundary value method; identifying the initial value; INVERSE SOURCE PROBLEM; TRUNCATION REGULARIZATION METHOD; CAUCHY-PROBLEM; UNKNOWN SOURCE;
D O I
10.1007/s10473-020-0304-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider to solve the inverse initial value problem for an inhomogeneous space-time fractional diffusion equation. This problem is ill-posed and the quasi-boundary value method is proposed to deal with this inverse problem and obtain the series expression of the regularized solution for the inverse initial value problem. We prove the error estimates between the regularization solution and the exact solution by using an a priori regularization parameter and an a posteriori regularization parameter choice rule. Some numerical results in one-dimensional case and two-dimensional case show that our method is efficient and stable.
引用
收藏
页码:641 / 658
页数:18
相关论文
共 50 条
  • [1] THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION
    杨帆
    张燕
    刘霄
    李晓晓
    ActaMathematicaScientia, 2020, 40 (03) : 641 - 658
  • [2] The Quasi-Boundary Value Method for Identifying the Initial Value of the Space-Time Fractional Diffusion Equation
    Fan Yang
    Yan Zhang
    Xiao Liu
    Xiaoxiao Li
    Acta Mathematica Scientia, 2020, 40 : 641 - 658
  • [3] The Quasi-Boundary Regularization Method for Recovering the Initial Value in a Nonlinear Time-Space Fractional Diffusion Equation
    Li, Dun-Gang
    Chen, Yong-Gang
    Gao, Yin-Xia
    Yang, Fan
    Xu, Jian-Ming
    Li, Xiao-Xiao
    SYMMETRY-BASEL, 2023, 15 (04):
  • [4] A quasi-boundary regularization method for identifying the initial value of time-fractional diffusion equation on spherically symmetric domain
    Yang, Fan
    Wang, Ni
    Li, Xiao-Xiao
    Huang, Can-Yun
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (05): : 609 - 621
  • [5] The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain
    Fan Yang
    Ya-Ru Sun
    Xiao-Xiao Li
    Can-Yun Huang
    Numerical Algorithms, 2019, 82 : 623 - 639
  • [6] The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain
    Yang, Fan
    Sun, Ya-Ru
    Li, Xiao-Xiao
    Huang, Can-Yun
    NUMERICAL ALGORITHMS, 2019, 82 (02) : 623 - 639
  • [7] Modified quasi-boundary value method for the multidimensional nonhomogeneous backward time fractional diffusion equation
    Jayakumar, Kokila
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8363 - 8378
  • [8] A nonstationary iterated quasi-boundary value method for reconstructing the source term in a time-space fractional diffusion equation
    Zhang, Yun
    Feng, Xiaoli
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [9] SOLVING AN INVERSE SOURCE PROBLEM FOR A TIME FRACTIONAL DIFFUSION EQUATION BY A MODIFIED QUASI-BOUNDARY VALUE METHOD
    Ruan, Zhousheng
    Zhang, Sen
    Xiong, Sican
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (04): : 669 - 682
  • [10] A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation
    Wei, Ting
    Wang, Jungang
    APPLIED NUMERICAL MATHEMATICS, 2014, 78 : 95 - 111