Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs

被引:12
作者
Czichowsky, Christoph [1 ]
Peyre, Remi [2 ,3 ]
Schachermayer, Walter [2 ,4 ]
Yang, Junjian [5 ]
机构
[1] London Sch Econ & Polit Sci, Dept Math, Columbia House,Houghton St, London WC2A 2AE, England
[2] Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Univ Lorraine, Inst Elie Cartan Lorraine, CNRS, Campus Aiguillettes,BP 70239, F-54506 Vandoeuvre Les Nancy, France
[4] Swiss Fed Inst Technol, Inst Theoret Studies, Zurich, Switzerland
[5] Ecole Polytech, Ctr Math Appl CMAP, Route Saclay, F-91128 Palaiseau, France
基金
奥地利科学基金会;
关键词
Proportional transaction costs; Fractional Brownian motion; Shadow prices; Two-way crossing; Logarithmic utility; UTILITY MAXIMIZATION; INCOMPLETE MARKETS; OPTIMAL INVESTMENT; SEMIMARTINGALE PROPERTY; DUALITY; CONSUMPTION; ARBITRAGE; THEOREM; TIME;
D O I
10.1007/s00780-017-0351-5
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The present paper accomplishes a major step towards a reconciliation of two conflicting approaches in mathematical finance: on the one hand, the mainstream approach based on the notion of no arbitrage (Black, Merton & Scholes), and on the other hand, the consideration of non-semimartingale price processes, the archetype of which being fractional Brownian motion (Mandelbrot). Imposing (arbitrarily small) proportional transaction costs and considering logarithmic utility optimisers, we are able to show the existence of a semimartingale, frictionless shadow price process for an exponential fractional Brownian financial market.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 29 条
[1]   Finite utility on financial markets with asymmetric information and structure properties of the price dynamics [J].
Ankirchner, S ;
Imkeller, P .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03) :479-503
[2]  
Bayraktar E., 2013, MATH FINAN IN PRESS
[3]   SIMPLE ARBITRAGE [J].
Bender, Christian .
ANNALS OF APPLIED PROBABILITY, 2012, 22 (05) :2067-2085
[4]   A multidimensional bipolar theorem in L0(Rd; Ω, F, P) [J].
Bouchard, B ;
Mazliak, L .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 107 (02) :213-231
[5]   Utility maximization on the real line under proportional transaction costs [J].
Bouchard, B .
FINANCE AND STOCHASTICS, 2002, 6 (04) :495-516
[6]   Multivariate utility maximization with proportional transaction costs [J].
Campi, Luciano ;
Owen, Mark P. .
FINANCE AND STOCHASTICS, 2011, 15 (03) :461-499
[7]   On optimal terminal wealth under transaction costs [J].
Cvitanic, J ;
Wang, H .
JOURNAL OF MATHEMATICAL ECONOMICS, 2001, 35 (02) :223-231
[8]  
CVITANIC J., 1996, MATH FINANC, V6, P113
[9]   SHADOW PRICES FOR CONTINUOUS PROCESSES [J].
Czichowsky, Christoph ;
Schachermayer, Walter ;
Yang, Junjian .
MATHEMATICAL FINANCE, 2017, 27 (03) :623-658
[10]   DUALITY THEORY FOR PORTFOLIO OPTIMISATION UNDER TRANSACTION COSTS [J].
Czichowsky, Christoph ;
Schachermayer, Walter .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (03) :1888-1941