Non-thermal plasma-assisted steam methane reforming for electrically-driven hydrogen production

被引:14
|
作者
Geng, Feiyang [1 ]
Haribal, Vasudev P. [2 ]
Hicks, Jason C. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, 250 Nieuwland Hall, Notre Dame, IN 46556 USA
[2] Susteon Inc, 5001 Weston Pkwy, Cary, NC 27513 USA
关键词
Plasma; Hydrogen; Methane conversion; Water gas shift reaction; Catalyst; DIELECTRIC-BARRIER DISCHARGE; GAS SHIFT REACTION; CARBON-DIOXIDE; CO2; TECHNOLOGY; CATALYST; ELECTRIFICATION; ACTIVATION; REACTOR; CONVERSION;
D O I
10.1016/j.apcata.2022.118903
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plasma-assisted steam methane reforming (SMR) has become a promising approach for low temperature and small-scale hydrogen production. To increase H2 yields, water-gas-shift reactions are needed to drive the formed CO to CO2 and H2. In this study, bulk gas temperature, plasma power and water feed rate strongly impacted the CO and CO2 product selectivity at high methane conversions of 60-80% in the presence of a Ni-based catalyst. CO2-enriched hydrogen could be formed directly with H2O/methane ratios > 4. To further increase the CO2/CO product selectivity, a "one-pot" cascade design with a Cu/ZnO/Al2O3/MgO catalyst bed placed downstream of the plasma zone achieved substantially higher CO2/CO selectivity (>15) in the effluent gas at 60% methane conversion and 300 degrees C. Comparably, placing the Cu-based catalyst in the plasma zone does not alter the CO2/CO selectivity. This study highlights the use of plasma reactor systems to directly tune the catalytic SMR perfor-mance and lead to an electrified route for hydrogen production.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A review on the non-thermal plasma-assisted ammonia synthesis technologies
    Peng, Peng
    Chen, Paul
    Schiappacasse, Charles
    Zhou, Nan
    Anderson, Erik
    Chen, Dongjie
    Liu, Juer
    Cheng, Yanling
    Hatzenbeller, Raymond
    Addy, Min
    Zhang, Yaning
    Liu, Yuhuan
    Ruan, Roger
    JOURNAL OF CLEANER PRODUCTION, 2018, 177 : 597 - 609
  • [22] Non-thermal plasma-assisted combustion research at Los Alamos
    Rosocha, L. A.
    Kim, Y.
    Anderson, G. K.
    Abbate, S.
    Sanchez-Gonzalez, R.
    2007 IEEE PULSED POWER CONFERENCE, VOLS 1-4, 2007, : 1391 - +
  • [23] Non-thermal plasma-assisted fuel conversion for green chemistry
    Nozaki, Tomohiro
    Gutsol, Alexander
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (27)
  • [24] Non-thermal plasma-assisted hydrogenolysis of polyethylene to light hydrocarbons
    Yao, Libo
    King, Jaelynne
    Wu, Dezhen
    Chuang, Steven S. C.
    Peng, Zhenmeng
    CATALYSIS COMMUNICATIONS, 2021, 150
  • [25] Structured Catalysts for Non-Thermal Plasma-Assisted Ammonia Synthesis
    Meloni, Eugenio
    Cafiero, Liberato
    Martino, Marco
    Palma, Vincenzo
    ENERGIES, 2023, 16 (07)
  • [26] Non-Thermal Plasma-Assisted Catalytic Reactions for Environmental Protection
    Vaiano, Vincenzo
    Iervolino, Giuseppina
    CATALYSTS, 2021, 11 (04)
  • [27] A comparative study of non-thermal plasma assisted reforming technologies
    Petitpas, G.
    Rollier, J.-D.
    Darmon, A.
    Gonzalez-Aguilar, J.
    Metkemeijer, R.
    Fulcheri, L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (14) : 2848 - 2867
  • [28] Hydrogen production via steam reforming of methane with nonthermal plasma.
    Kabashima, H
    Futamura, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 224 : U571 - U571
  • [29] Optimization of Non-thermal Plasma-Assisted Catalytic Oxidation for Methane Emissions Abatement as an Exhaust Aftertreatment Technology
    Gholami, Rahman
    Stere, Cristina
    Chansai, Sarayute
    Singhania, Amit
    Goguet, Alexandre
    Hinde, Peter
    Millington, Paul
    Hardacre, Christopher
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2022, 42 (04) : 709 - 730
  • [30] Experimental investigation of solar hydrogen production via photo-thermal driven steam methane reforming
    Dong, Hao
    Fang, Juan
    Yan, Xiangyu
    Lu, Buchu
    Liu, Qibin
    Liu, Xunliang
    APPLIED ENERGY, 2024, 368