Fourier Series in Weighted Lorentz Spaces

被引:2
|
作者
Rastegari, Javad [1 ]
Sinnamon, Gord [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fourier series; Fourier coefficients; Weights; Lorentz space; LAPLACE TRANSFORM; HARDY-SPACES; INEQUALITIES;
D O I
10.1007/s00041-015-9455-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Fourier coefficient map is considered as an operator from a weighted Lorentz space on the circle to a weighted Lorentz sequence space. For a large range of Lorentz indices, necessary and sufficient conditions on the weights are given for the map to be bounded. In addition, new direct analogues are given for known weighted Lorentz space inequalities for the Fourier transform. Applications are given that involve Fourier coefficients of functions in LogL and more general Lorentz-Zygmund spaces.
引用
收藏
页码:1192 / 1223
页数:32
相关论文
共 50 条
  • [1] Fourier Series in Weighted Lorentz Spaces
    Javad Rastegari
    Gord Sinnamon
    Journal of Fourier Analysis and Applications, 2016, 22 : 1192 - 1223
  • [2] The Fourier transform in weighted Lorentz spaces
    Sinnamon, G
    PUBLICACIONS MATEMATIQUES, 2003, 47 (01) : 3 - 29
  • [3] Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces
    Nursultanov, Erlan
    Tikhonov, Sergey
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (04)
  • [4] Weighted Fourier Inequalities in Lebesgue and Lorentz Spaces
    Erlan Nursultanov
    Sergey Tikhonov
    Journal of Fourier Analysis and Applications, 2020, 26
  • [5] MULTIPLIERS OF FOURIER-HAAR SERIES IN LORENTZ SPACES
    Tleukhanova, N. T.
    Bashirova, A. N.
    EURASIAN MATHEMATICAL JOURNAL, 2022, 13 (04): : 82 - 87
  • [6] Multiplicative convolutions of functions from Lorentz spaces and convergence of series of Fourier–Vilenkin coefficients
    Volosivets S.S.
    Kuznetsova M.A.
    Russian Mathematics, 2017, 61 (5) : 26 - 37
  • [7] On multipliers of Fourier series in the Lorentz space
    Ydyrys, Aizhan Zh
    Tleukhanova, Nazerke T.
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [8] Some Fourier inequalities for orthogonal systems in Lorentz–Zygmund spaces
    G. Akishev
    L. E. Persson
    A. Seger
    Journal of Inequalities and Applications, 2019
  • [9] Some Fourier inequalities for orthogonal systems in Lorentz-Zygmund spaces
    Akishev, G.
    Persson, L. E.
    Seger, A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [10] Some new Fourier inequalities for unbounded orthogonal systems in Lorentz–Zygmund spaces
    G. Akishev
    D. Lukkassen
    L. E. Persson
    Journal of Inequalities and Applications, 2020