A 3D printable self-healing composite conductive polymer for sensitive temperature detection

被引:15
|
作者
He, Mengnan [1 ]
Zhao, Yan [1 ]
Liu, Yunqi [1 ]
Wei, Dacheng [1 ]
机构
[1] Fudan Univ, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite conductive polymer; Self-healing; 3D printing; Temperature detection; Electronic device;
D O I
10.1016/j.cclet.2019.06.003
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent development of self-healing material has attracted tremendous attention, owing to its biomimetic ability to restore structure and functionality when encountering damages. Here, we develop a three-dimensional (3D) printable self-healing composite conductive polymer by mixing hydrogen-bond-based supramolecular polymer with low-cost carbon black. It has a room-temperature self-healing capability in both conductivity and mechanical property, while its shear-thinning behavior enables fabrication of a self-healable circuit by 3D printing technology. As an application, the circuit shows an excellent temperature-dependent behavior of the resistance, indicating its great potential for practical application in the artificial intelligence field. (C) 2019 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:826 / 830
页数:5
相关论文
共 50 条
  • [1] A 3D printable self-healing composite conductive polymer for sensitive temperature detection
    Mengnan He
    Yan Zhao
    Yunqi Liu
    Dacheng Wei
    Chinese Chemical Letters, 2020, 31 (03) : 826 - 830
  • [2] Photocuring 3D printable self-healing polymers
    Zhu, Junjie
    Chen, Jixun
    An, Zihan
    Kankala, Ranjith Kumar
    Chen, Ai-Zheng
    Wang, Shi-Bin
    Li, Yuewei
    EUROPEAN POLYMER JOURNAL, 2023, 199 (199)
  • [3] Stretchable and self-healing ionic conductive elastomer for multifunctional 3D printable sensor
    Wu, Qirui
    Han, Songjiu
    Zhu, Jundong
    Chen, Anbang
    Zhang, Jiayu
    Yan, Zhen
    Liu, Jiantao
    Huang, Jianren
    Yang, Xiaoxiang
    Guan, Lunhui
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [4] A 3D printable and self-healing polydimethylsiloxane elastomer
    Wei, Zi-Xing
    Wang, Hong-Qin
    Li, Cheng-Hui
    JOURNAL OF POLYMER SCIENCE, 2024, 62 (05) : 859 - 869
  • [5] Fabrication of a Self-Healing, 3D Printable, and Reprocessable Biobased Elastomer
    Rahman, Saadman Sakib
    Arshad, Muhammad
    Qureshi, Ahmed
    Ullah, Aman
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (46) : 51927 - 51939
  • [6] Self-Powered Integrated Tactile Sensing System Based on Ultrastretchable, Self-Healing and 3D Printable Ionic Conductive Hydrogel
    Mogli, Giorgio
    Reina, Marco
    Chiappone, Annalisa
    Lamberti, Andrea
    Pirri, Candido Fabrizio
    Roppolo, Ignazio
    Stassi, Stefano
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (07)
  • [7] Electrically conductive self-healing polymer composite coatings
    Bailey, Brennan M.
    Leterrier, Yves
    Garcia, S. J.
    van der Zwaag, S.
    Michaud, Veronique
    PROGRESS IN ORGANIC COATINGS, 2015, 85 : 189 - 198
  • [8] A Fast and Room-temperature Self-healing Thermal Conductive Polymer Composite
    Yue, De-Wei
    Wang, Hong-Qin
    Tao, Han-Qing
    Zheng, Peng
    Li, Cheng-Hui
    Zuo, Jing-Lin
    CHINESE JOURNAL OF POLYMER SCIENCE, 2021, 39 (10) : 1328 - 1336
  • [9] A Fast and Room-temperature Self-healing Thermal Conductive Polymer Composite
    De-Wei Yue
    Hong-Qin Wang
    Han-Qing Tao
    Peng Zheng
    Cheng-Hui Li
    Jing-Lin Zuo
    Chinese Journal of Polymer Science, 2021, 39 : 1328 - 1336
  • [10] 3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices
    Seong, Minho
    Kondaveeti, Stalin
    Choi, Geonjun
    Kim, Somi
    Kim, Jaeil
    Kang, Minsu
    Jeong, Hoon Eui
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (08) : 11042 - 11052