Effect of Silicon Carbide Nanoparticles on the Grain Boundary Segregation and Thermoelectric Properties of Bismuth Doped Mg2Si0.7Ge0.3

被引:15
作者
Farahi, Nader [1 ,2 ]
Prabhudev, Sagar [3 ]
Bugnet, Matthieu [3 ]
Botton, Gianluigi A. [3 ]
Salvador, James R. [4 ]
Kleinke, Holger [1 ,2 ]
机构
[1] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Waterloo Inst Nanotechnol, Waterloo, ON N2L 3G1, Canada
[3] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L8, Canada
[4] Gen Motors Res & Dev Ctr, Warren, MI 48154 USA
关键词
Magnesium silicide; silicon carbide; thermoelectrics; nanocomposites; MG2SI;
D O I
10.1007/s11664-016-4892-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effect of silicon carbide (SiC) nanoparticles on the thermoelectric properties of Mg2Si0.676Ge0.3Bi0.024 was investigated. Increasing the concentration of SiC nanoparticles systematically reduces the electrical conductivity from 431 Omega(-1) cm(-1) for the pristine sample to 370 Omega(-1) cm(-1) for the sample with 1.5 wt.% SiC at 773 K, while enhancing the Seebeck coefficient from -202 mu V K-1 to -215 mu V K-1 at 773 K. In spite of the high thermal conductivity of SiC, its additions could successfully decrease the lattice thermal conductivity from 3.2 W m(-1) K-1 to 2.7 W m(-1) K-1 at 323 K, presumably by adding more interfaces. The Z contrast transmission electron microscopy imaging (Z = atomic number) and energy dispersive x-ray spectroscopy revealed bismuth segregation at the grain boundary. In summary, the figure of merit reached its maximum value of 0.75 at 773 K for the sample containing 0.5 wt.% SiC.
引用
收藏
页码:6052 / 6058
页数:7
相关论文
共 28 条
[1]   The thermoelectric properties of bulk crystalline n- and p-type Mg2Si prepared by the vertical Bridgman method [J].
Akasaka, Masayasu ;
Iida, Tsutomu ;
Matsumoto, Atsunobu ;
Yamanaka, Kohei ;
Takanashi, Yoshifumi ;
Imai, Tomohiro ;
Hamada, Noriaki .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (01)
[2]   Mechanochemical synthesis and thermoelectric properties of high quality magnesium silicide [J].
Bux, Sabah K. ;
Yeung, Michael T. ;
Toberer, Eric S. ;
Snyder, G. Jeffrey ;
Kaner, Richard B. ;
Fleurial, Jean-Pierre .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (33) :12259-12266
[3]   Enhanced thermoelectric properties of Mg2Si by addition of TiO2 nanoparticles [J].
Cederkrantz, D. ;
Farahi, N. ;
Borup, K. A. ;
Iversen, B. B. ;
Nygren, M. ;
Palmqvist, A. E. C. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (02)
[4]   New directions for low-dimensional thermoelectric materials [J].
Dresselhaus, Mildred S. ;
Chen, Gang ;
Tang, Ming Y. ;
Yang, Ronggui ;
Lee, Hohyun ;
Wang, Dezhi ;
Ren, Zhifeng ;
Fleurial, Jean-Pierre ;
Gogna, Pawan .
ADVANCED MATERIALS, 2007, 19 (08) :1043-1053
[5]   Theory of enhancement of thermoelectric properties of materials with nanoinclusions [J].
Faleev, Sergey V. ;
Leonard, Francois .
PHYSICAL REVIEW B, 2008, 77 (21)
[6]   Enhanced figure of merit in Mg2Si0.877Ge0.1Bi0.023/multi wall carbon nanotube nanocomposites [J].
Farahi, Nader ;
Prabhudev, Sagar ;
Bugnet, Matthieu ;
Botton, Gianluigi A. ;
Zhao, Jianbao ;
Tse, John S. ;
Salvador, James R. ;
Kleinke, Holger .
RSC ADVANCES, 2015, 5 (80) :65328-65336
[7]   Local structure and thermoelectric properties of Mg2Si0.977-xGexBi0.023 (0.1 ≤ x ≤ 0.4) [J].
Farahi, Nader ;
Prabhudev, Sagar ;
Botton, Gianluigi A. ;
Zhao, Jianbao ;
Tse, John S. ;
Liu, Zhenxian ;
Salvador, James R. ;
Kleinke, Holger .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 644 :249-255
[8]   Synthesis and characterization of Bi-doped Mg2Si thermoelectric materials [J].
Fiameni, S. ;
Battiston, S. ;
Boldrini, S. ;
Famengo, A. ;
Agresti, F. ;
Barison, S. ;
Fabrizio, M. .
JOURNAL OF SOLID STATE CHEMISTRY, 2012, 193 :142-146
[9]  
Furlong R. R., 1999, NUCL NEWS, V42, P26
[10]   Nanostructuring of Thermoelectric Mg2Si via a Nonequilibrium Intermediate State [J].
Ikeda, Teruyuki ;
Haviez, Laura ;
Li, Youli ;
Snyder, G. Jeffrey .
SMALL, 2012, 8 (15) :2350-2355