THE INVERSE PROBLEM IN CONVEX OPTIMIZATION WITH LINEAR CONSTRAINTS

被引:2
作者
Aloqeili, Marwan [1 ]
机构
[1] Birzeit Univ, Dept Math, POB 14, Birzeit, Palestine
关键词
Inverse problem; multi-constraint maximization; value function; Slutsky relations;
D O I
10.1051/cocv/2015040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we solve an inverse problem arising in convex optimization. We consider a maximization problem under m linear constraints. We characterize the solutions of this kind of problems. More precisely, we give necessary and sufficient conditions for a given function in R-n to be the solution of a multi-constraint maximization problem. The conditions we give here extend well-known results in microeconomic theory.
引用
收藏
页码:71 / 94
页数:24
相关论文
共 10 条
[1]   The generalized Slutsky relations [J].
Aloqeili, M .
JOURNAL OF MATHEMATICAL ECONOMICS, 2004, 40 (1-2) :71-91
[2]  
Aloqeili M., 2000, THESIS
[3]   Characterizing demand functions with price dependent income [J].
Aloqeili, Marwan .
MATHEMATICS AND FINANCIAL ECONOMICS, 2014, 8 (02) :135-151
[4]  
Bryant R.L., 1991, EXTERIOR DIFFERENTIA, DOI [10.1007/978-1-4613-9714-4, DOI 10.1007/978-1-4613-9714-4]
[5]   The micro economics of group behavior: General characterization [J].
Chiappori, P. A. ;
Ekeland, I. .
JOURNAL OF ECONOMIC THEORY, 2006, 130 (01) :1-26
[6]  
Chiappori P.A., EXTERIOR DIFFERENTIA
[7]  
Chiappori PA, 2010, EC MATH AGGREGATION
[8]  
Ekeland I., 2016, ANN I H POINCARE NON, V23, P269
[9]  
Ekeland I., 2002, METHODS APPL ANAL, V9, P329
[10]   GENERALIZED DUALITY AND INTEGRABILITY [J].
EPSTEIN, LG .
ECONOMETRICA, 1981, 49 (03) :655-678