Algebraic approach for the exploration of the onset of chaos in discrete nonlinear dynamical systems

被引:6
|
作者
Ragulskis, Minvydas [1 ]
Navickas, Zenonas [2 ]
Palivonaite, Rita [1 ]
Landauskas, Mantas [1 ]
机构
[1] Kaunas Univ Technol, Res Grp Math & Numer Anal Dynam Syst, LT-51368 Kaunas, Lithuania
[2] Kaunas Univ Technol, Dept Appl Math, LT-51368 Kaunas, Lithuania
关键词
Hankel matrix; Rank of a sequence; Algebraic decomposition; Onset of chaos; NOISE;
D O I
10.1016/j.cnsns.2012.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebraic approach based on the rank of a sequence is proposed for the exploration of the onset of chaos in discrete nonlinear dynamical systems. The rank of the partial solution is identified and a special technique based on Hankel matrices is used to decompose the solution into algebraic primitives comprising roots of the modified characteristic equation. The distribution of roots describes the dynamical complexity of a solution and is used to explore properties of the nonlinear system and the onset of chaos. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:4304 / 4315
页数:12
相关论文
共 50 条
  • [42] Chaos for Discrete Dynamical System
    Wang, Lidong
    Liu, Heng
    Gao, Yuelin
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [43] Dynamical spectra and the onset of chaos
    Contopoulos, G
    NONLINEAR DYNAMICS AND CHAOS IN ASTROPHYSICS: FESTSCHRIFT IN HONOR OF GEORGE CONTOPOULOS, 1998, 867 : 14 - 40
  • [44] DYNAMICAL BEHAVIOR AT THE ONSET OF CHAOS
    ANANIA, G
    POLITI, A
    EUROPHYSICS LETTERS, 1988, 7 (02): : 119 - 124
  • [45] A LIE ALGEBRAIC APPROACH TO THE CONTROL OF NONLINEAR DISCRETE-TIME DYNAMIC-SYSTEMS
    MAGANA, ME
    ZAK, SH
    IEEE INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING ///, 1989, : 581 - 584
  • [46] Observability of nonlinear systems - An algebraic approach
    Tibken, B
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4824 - 4825
  • [47] Intrinsically localized chaos in discrete nonlinear extended systems
    Martínez, PJ
    Floría, LM
    Falo, F
    Mazo, JJ
    EUROPHYSICS LETTERS, 1999, 45 (04): : 444 - 449
  • [48] Homoclinic Orbits and Chaos in Nonlinear Dynamical Systems: Auxiliary Systems Method
    Grechko, D. A.
    Barabash, N., V
    Belykh, V. N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (14) : 3365 - 3371
  • [49] Homoclinic Orbits and Chaos in Nonlinear Dynamical Systems: Auxiliary Systems Method
    D. A. Grechko
    N. V. Barabash
    V. N. Belykh
    Lobachevskii Journal of Mathematics, 2021, 42 : 3365 - 3371
  • [50] An algebraic approach to discrete systems observability analysis
    Zhirabok, A.N.
    Shlikht, A.G.
    Izvestiya Akademii Nauk. Teoriya i Sistemy Upravleniya, 1992, (04): : 113 - 119