Algebraic approach for the exploration of the onset of chaos in discrete nonlinear dynamical systems

被引:6
|
作者
Ragulskis, Minvydas [1 ]
Navickas, Zenonas [2 ]
Palivonaite, Rita [1 ]
Landauskas, Mantas [1 ]
机构
[1] Kaunas Univ Technol, Res Grp Math & Numer Anal Dynam Syst, LT-51368 Kaunas, Lithuania
[2] Kaunas Univ Technol, Dept Appl Math, LT-51368 Kaunas, Lithuania
关键词
Hankel matrix; Rank of a sequence; Algebraic decomposition; Onset of chaos; NOISE;
D O I
10.1016/j.cnsns.2012.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebraic approach based on the rank of a sequence is proposed for the exploration of the onset of chaos in discrete nonlinear dynamical systems. The rank of the partial solution is identified and a special technique based on Hankel matrices is used to decompose the solution into algebraic primitives comprising roots of the modified characteristic equation. The distribution of roots describes the dynamical complexity of a solution and is used to explore properties of the nonlinear system and the onset of chaos. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:4304 / 4315
页数:12
相关论文
共 50 条
  • [31] An algebraic approach to design of discrete systems
    Fujimoto, Y
    Sekiguchi, T
    IECON 2000: 26TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-4: 21ST CENTURY TECHNOLOGIES AND INDUSTRIAL OPPORTUNITIES, 2000, : 2608 - 2613
  • [32] Statistical descriptions of nonlinear systems at the onset of chaos
    Coraddu, M
    Lissia, M
    Tonelli, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (01) : 252 - 257
  • [33] Individual chaos implies collective chaos for weakly mixing discrete dynamical systems
    Liao, Gongfu
    Ma, Xianfeng
    Wang, Lidong
    CHAOS SOLITONS & FRACTALS, 2007, 32 (02) : 604 - 608
  • [34] A NONLINEAR DYNAMICAL (CHAOS) APPROACH TO THE ANALYSIS OF BROILER GROWTH
    ROUSH, WB
    BARBATO, GF
    CRAVENER, TL
    POULTRY SCIENCE, 1994, 73 (08) : 1183 - 1195
  • [35] Performance analysis of indicators of chaos for nonlinear dynamical systems
    Bazzani, A.
    Giovannozzi, M.
    Montanari, C. E.
    Turchetti, G.
    PHYSICAL REVIEW E, 2023, 107 (06)
  • [36] An application of chaos and bifurcation in nonlinear dynamical power systems
    Kuru, L
    Kuru, E
    Yalçin, MA
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOL 3, STUDENT SESSIONS, PROCEEDINGS, 2004, : 11 - 15
  • [37] Instability of a class of nonlinear discrete dynamical systems
    Zhao, Jiemin
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 2025 - 2026
  • [38] Distributional chaos of time-varying discrete dynamical systems
    Wang, Lidong
    Li, Yingnan
    Gao, Yuelin
    Liu, Heng
    ANNALES POLONICI MATHEMATICI, 2013, 107 (01) : 49 - 57
  • [39] CHAOS, ENTROPY AND INTEGRALS FOR DISCRETE DYNAMICAL-SYSTEMS ON LATTICES
    PALMORE, J
    CHAOS SOLITONS & FRACTALS, 1995, 5 (08) : 1397 - 1418
  • [40] Algebraic entropy and the space of initial values for discrete dynamical systems
    Takenawa, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10533 - 10545