Algebraic approach for the exploration of the onset of chaos in discrete nonlinear dynamical systems

被引:6
|
作者
Ragulskis, Minvydas [1 ]
Navickas, Zenonas [2 ]
Palivonaite, Rita [1 ]
Landauskas, Mantas [1 ]
机构
[1] Kaunas Univ Technol, Res Grp Math & Numer Anal Dynam Syst, LT-51368 Kaunas, Lithuania
[2] Kaunas Univ Technol, Dept Appl Math, LT-51368 Kaunas, Lithuania
关键词
Hankel matrix; Rank of a sequence; Algebraic decomposition; Onset of chaos; NOISE;
D O I
10.1016/j.cnsns.2012.03.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algebraic approach based on the rank of a sequence is proposed for the exploration of the onset of chaos in discrete nonlinear dynamical systems. The rank of the partial solution is identified and a special technique based on Hankel matrices is used to decompose the solution into algebraic primitives comprising roots of the modified characteristic equation. The distribution of roots describes the dynamical complexity of a solution and is used to explore properties of the nonlinear system and the onset of chaos. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:4304 / 4315
页数:12
相关论文
共 46 条
  • [1] The rank of a sequence as an indicator of chaos in discrete nonlinear dynamical systems
    Ragulskis, Minvydas
    Navickas, Zenonas
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (07) : 2894 - 2906
  • [2] Stabilization of stochastic cycles and chaos suppression for nonlinear discrete-time systems
    Bashkirtseva, I.
    Ryashko, L.
    NONLINEAR DYNAMICS, 2012, 67 (04) : 2505 - 2517
  • [3] Dynamical Chaos in a Nonlinear System with 1/f  Spectrum
    V. P. Koverda
    V. N. Skokov
    Technical Physics Letters, 2019, 45 : 1159 - 1162
  • [4] Dynamical Chaos in a Nonlinear System with 1/f Spectrum
    Koverda, V. P.
    Skokov, V. N.
    TECHNICAL PHYSICS LETTERS, 2019, 45 (11) : 1159 - 1162
  • [5] Dynamical Systems Design of Nonlinear Oscillators using Phase Reduction Approach
    Nakada, Kazuki
    Miura, Keiji
    Asai, Tetsuya
    Tanaka, Hisa-aki
    2012 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS), 2012, : 308 - 311
  • [6] Manifestations of the onset of chaos in condensed matter and complex systems
    Velarde, Carlos
    Robledo, Alberto
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (5-6) : 645 - 660
  • [7] Response analysis of fuzzy nonlinear dynamical systems
    Hong, Ling
    Jiang, Jun
    Sun, Jian-Qiao
    NONLINEAR DYNAMICS, 2014, 78 (02) : 1221 - 1232
  • [8] Laser dynamical reservoir computing with consistency: an approach of a chaos mask signal
    Nakayama, Joma
    Kanno, Kazutaka
    Uchida, Atsushi
    OPTICS EXPRESS, 2016, 24 (08): : 8679 - 8692
  • [9] H-rank as a Control Tool for Discrete Dynamical Systems
    Landauskas, Mantas
    Ragulskiene, Jurate
    Ragulskis, Minvydas
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 2098 - 2101
  • [10] Parameter estimation of nonlinear dynamical systems based on integrator theory
    Peng, Haipeng
    Li, Lixiang
    Yang, Yixian
    Wang, Cong
    CHAOS, 2009, 19 (03)